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Abstract. This study integrates Computational Fluid Dynamics—Discrete Element
Method (CFD-DEM) simulations with symbolic regression to develop interpretable
models for wet ball grinding. A Neural Network (NN) based extrapolation bridges the
computational-experimental scale gap, enabling simulations at tractable particle sizes
(755-2000 pm) to inform models for industrially relevant sizes (214—800 pm). Six sym-
bolic regression frameworks were rigorously benchmarked: mainstream methods PySR
and gplearn; PhySO; the physics-informed framework SyBReN; classic Simulated An-
nealing (SA); and a novel Simulated Annealing—Markov-Chain (SA-MC) approach in-
troduced in this work and released as open-source software. The analysis successfully
reconstructed key components of Kwade’s energy model directly from data without
theoretical constraints. Using simulation-derived stress parameters, predictions of ex-
perimental specific energy achieved coefficients of determination R? > 0.9, demonstrat-
ing that physics-informed computational features can reliably forecast real grinding
performance. SA-MC delivered robust performance across equation complexities while
avoiding complete failures, relying only on experimentally accessible parameters. The
discovered expressions reveal previously hidden grinding mechanics, providing trans-
parent and physically meaningful equations suitable for real-time process control and
establishing foundations for future digital twin implementation in industrial comminu-
tion.
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1 Introduction

Comminution occupies a paradoxical position in process industries: indispensable for
mineral liberation, pigment dispersion, pharmaceutical formulations, and high-perfor-
mance ceramics production, yet notoriously energy-intensive, often consuming the
largest fraction of plant electricity. For over a century, researchers have sought predic-
tive models for optimization, scale-up, and control.

The earliest attempts were classical energy laws formalizing the relationship be-
tween grinding energy and particle size reduction. Rittinger argued that energy required
for comminution is proportional to surface area increase [1], while Kick countered that
fracture energy should scale with volume reduction [2]. Bond introduced his "third the-
ory," interpolating between the two and remaining a cornerstone of industrial mill de-
sign [3]. Hukki later emphasized that no single theory is universally valid, proposing a
"solomonic settlement" accounting for different particle size ranges [4]. Meloy at-
tempted to unify these perspectives through dimensional analysis in a physically con-
sistent framework [5]. These works shaped practice for decades and framed scientific
debate around energy efficiency.

By the mid-20th century, comminution science shifted to more mechanistic formu-
lations. Austin, Klimpel, and Luckie developed detailed ball milling treatments [6].
Herbst and Fuerstenau demonstrated control strategies rooted in breakage kinetics [7].
Napier-Munn's monograph brought together decades of plant experience [8], while
King emphasized simulation as a design tool [9]. Population Balance Models (PBMs)
became central, with Hinde et al. [10] demonstrating their use for predicting product
distributions, and Austin and Bagga providing fundamental analyses [11]. PBMs of-
fered elegance and predictive rigor but remained difficult to calibrate, limiting day-to-
day plant application.

A new perspective arose through Kwade's stress intensity/stress number model.
Kwade [12] framed wet comminution in stirred mills using two key parameters: Stress
Intensity (SI) [Pa] and Number of Stress Events (SN) [-]. Subsequent work by Kwade
and Schwedes [13] examined material breakage characteristics, while later studies pro-
vided design guidelines for nanoparticle production [14], validated particle size distri-
bution predictions [15], investigated stirred media mills [16,17], analyzed energy effi-
ciency [18], and considered industrial scale-up [19]. This mechanistic-empirical frame-
work remains influential in laboratory and industrial practice.

Despite these advances, semi-empirical model limitations persisted. They often re-
quired material-specific calibration and could not capture nonlinear interactions involv-
ing slurry rheology, particle-particle effects, or wear. Jankovi¢ et al. [20] underscored
cement grinding optimization challenges, Napier-Munn et al. [21] highlighted gaps in
linking design to circuit performance, and Cho et al. [22] emphasized ball sizing opti-
mization importance.



The advent of DEM and CFD fundamentally expanded the comminution modeling
toolbox. Cundall and Strack [23] introduced DEM for granular assemblies, extended
by Tsuji et al. [24] to fluid-particle flows. Reviews by Deen et al. [25] and Zhu et al.
[26] documented rapid spread. Cleary [27] pioneered DEM in grinding, followed by
Sinnott, Cleary and Morrison [28,29], Weerasekara et al. [30], and Powell et al. [31].
Coupled CFD-DEM methods matured with Suzzi et al. [32], Radeke et al. [33], and
Mori et al. [34], while comprehensive models emerged from Radl et al. [35] and Herbst
et al. [36]. Recent applications include Sinnott et al. [37], Mayank et al. [38], Cleary
and Owen [39], Larsson et al. [40], Fragniére et al. [41], and Tanneru et al. [42]. These
high-fidelity simulations provided unprecedented detail but computational cost limited
routine industrial deployment.

To overcome this bottleneck, researchers increasingly turned to NN augmentation
of simulation data. Raissi et al. [43] introduced Physics-Informed Neural Networks
(PINNSs), while Han et al. [44] demonstrated deep networks for high-dimensional PDEs.
Thuerey et al. [45] applied deep learning to accelerate flow prediction, and Meng et al.
[46] showed NNs can approximate DEM outcomes for granular flows. Such methods
enable extrapolating simulation results into experimental parameter ranges, yielding
hybrid datasets combining CFD-DEM accuracy with machine learning flexibility.

The resulting gap is striking: plants collect extensive data—power draw, torque,
slurry density, particle size distributions—yet converting these into actionable predic-
tive models remains difficult. Black-box machine learning has been trialed, but its lack
of transparency makes adoption unlikely in safety-critical and regulated industries. In-
terpretability is essential: engineers need not just predictions but understanding of why
variables matter.

Here, Symbolic Regression (SR) presents a compelling solution. SR searches math-
ematical expression space to find formulas fitting data while remaining interpretable.
Schmidt and Lipson's seminal work [47] demonstrated SR could rediscover physical
laws directly from experimental data. Modern frameworks balance computational per-
formance and interpretability differently: PySR provides evolutionary search with gra-
dient refinement [48]; gplearn implements genetic programming in Python [49]; PhySO
integrates physics-inspired priors and dimensional constraints [50]; SyBReN applies
physics-inspired modeling in industrial contexts [51].

In parallel, stochastic optimization strategies contributed to SR evolution. SA, intro-
duced by Kirkpatrick et al. [52] and independently by Cerny [53], uses thermodynamic
analogies to escape local minima. Its theoretical grounding lies in Markov Chains
(MC), developed by Markov [54] and extended by Harchol-Balter [55]. Liang et al.
[56] combined genetic programming with Markov Chain Monte Carlo (MCMC) for
symbolic regression, framing equation discovery as stochastic sampling guided by
Bayesian inference. Building on these ideas, we introduce SA-MC, a simulated anneal-
ing-Markov chain variant tailored to noisy, moderate-scale datasets typical of commi-
nution experiments.



Beyond algorithmic diversity, SR aligns with the push toward interpretable machine
learning. Rudin [57] argues against deploying black-box models in high-stakes deci-
sions. Molnar [58] systematizes interpretability methods, while Lipton [59] critiques
interpretability misconceptions, and Doshi-Velez and Kim [60] call for rigorous expla-
nation science. In process engineering, these principles are critical: operators must trust
models influencing production. Bangi et al. [61] emphasize hybrid modeling, showing
how mechanistic and data-driven approaches combine. SR naturally supports this par-
adigm by rediscovering mechanistic terms while remaining flexible to empirical data.

The implications for comminution are significant. Transparent symbolic models en-
able optimization with respect to any key performance indicator while remaining inter-
pretable. They can act as soft sensors predicting target metrics in real time, reducing
reliance on costly measurements and enabling control loop integration for automated
monitoring, quality stabilization, and operational efficiency improvement.

This paper presents precisely such a workflow. Laboratory grinding experiments and
CFD-DEM simulations combine into a hybrid dataset, augmented by NN extrapola-
tions, covering torque, Particle Size Distributions (PSDs), slurry metrics, stirrer speeds,
and bead sizes. This dataset benchmarks SR frameworks: PySR, gplearn, PhySO,
SyBReN, and SA, against the newly developed SA-MC method. SA-MC balances ex-
ploration and parsimony, producing compact, physically meaningful models. Figure 1
summarizes the complete pipeline, illustrating how experimental and computational
data are integrated through symbolic regression frameworks to produce transparent
equations for process optimization.
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Fig. 1. Workflow for developing interpretable comminution models: experimental and
CFD-DEM data are combined, analyzed, and modeled with symbolic regression frame-
works (PySR, gplearn, PhySO, SyBReN, SA, SA-MC) to produce transparent equa-
tions for optimization and soft sensing.



Our contribution unfolds along four dimensions. First, we generate and process a
comprehensive dataset combining laboratory grinding experiments with CFD-DEM
simulations to capture parameters otherwise inaccessible experimentally. Second, we
augment simulation data with neural-network extrapolation to bridge the gap between
tractable computational bead sizes and experimentally feasible ranges, enabling hybrid
datasets suitable for modeling. Third, we develop SA-MC, a novel SR method
grounded in simulated annealing and Markov chain theory. Fourth, we benchmark SA-
MC against leading SR frameworks, establishing a reproducible evaluation framework
for comminution modeling. Finally, in the Outlook, we outline how transparent, equa-
tion-based models could be deployed to improve grinding efficiency in industrial con-
texts. Collectively, these contributions advance interpretable, data-driven process opti-
mization and bridge the divide between mechanistic comminution models and black-
box machine learning.

2 Methodology
2.1  Experimental Setup and Data Acquisition

To develop a robust dataset for accurately modeling key process parameters in wet
stirred media milling systems, experimental data were obtained from the PML V-H
laboratory bead mill. The PML V-H is a 1.2-liter, 3.3 KW stirred media mill manufac-
tured by Draiswerke (now Biihler Group) in 1991, representing a well-characterized
laboratory-scale grinding system suitable for fundamental process investigation,
providing precise control over grinding conditions while enabling comprehensive pro-
cess monitoring and data collection.

Figure 2 demonstrates the mill configuration and the complex temporal evolution of
three key process parameters during grinding operations. The mill features a horizontal
Wet Stirred Media Mill design with sophisticated monitoring capabilities that enable
real-time tracking of the Suspension Conductivity (¢) [uS/cm] and Torque on the Shaft
(M;) [Nm] throughout the grinding process. The Median Particle Size (xso) [pm], was
determined by periodically withdrawing samples at defined time intervals, which were
subsequently analyzed offline to quantify the median particle size evolution.
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Fig. 2. PML V-H mill configuration showing rotor assembly with grinding discs (left)
and temporal evolution of x5, , o , and M, during 5-hour grinding operation (right)

The experimental campaign focused on aluminum oxide processing using steel grind-
ing beads with diameters ranging from 214 to 800 pum, representing the fine grinding
regime typical of industrial applications. This size range encompasses both the transi-
tion from impact-dominated to attrition-dominated breakage mechanisms and provides
sufficient variation for comprehensive model development. The selection of steel grind-
ing media ensured consistent material properties characterized by high density (7850
kg/m?®) and mechanical strength, avoiding potential contamination issues that might
arise with ceramic alternatives. In total, the dataset comprised 20 experimental runs,
covering the full range of grinding media sizes and operating conditions considered in
this study.

The experimental matrix encompassed Circumferential Speed (v,) [m/s] varying
systematically between 6 and 12 m/s, corresponding to different energy input levels and
stress intensities within the mill. These velocity ranges were selected to cover the op-
erational envelope typical of industrial wet grinding applications while maintaining suf-
ficient energy input for effective particle breakage. Solid content levels were systemat-
ically adjusted from 10% to 30% by volume to investigate the influence of suspension
concentration on grinding efficiency and energy utilization.

All experimental runs were conducted over approximately 5 hours to ensure sufficient
process evolution and statistical significance of measurements. As demonstrated in Fig-
ure 2, the temporal evolution shows characteristic grinding behavior with initial rapid
x50 reduction from approximately 780 um to below 100 pm, followed by gradual sta-
bilization. Simultaneously, ¢ increases systematically due to increased particle surface
area and potential contamination, while M, initially decreases as particle breakage re-
duces grinding resistance, then stabilizes at steady-state conditions.



Process Parameter Measurement. During each experimental run, comprehensive
process monitoring was implemented through discrete time interval measurements,
with sampling frequencies optimized to capture both rapid transient phenomena and
long-term process evolution. Key parameters included as mentioned previously the Par-
ticle Size Distribution (PSD) evolution, measured using laser diffraction techniques to
track the progression of particle breakage throughout the grinding process. M; on the
main shaft was continuously recorded using precision torque sensors, enabling real-
time monitoring of power consumption and stress conditions within the mill. In addi-
tion, a broad set of process parameters was systematically recorded to characterize the
mechanical and operational state of the system. These included v,, Grinding Time
(tz) [s], particle size (x4, x50, Xo0 ), Specific Energy (E,,,) [J/kg], Stirrer Speed (n) [rad/s],
Porosity(e) [-], Grinding Media Diameter (dgy) [pm], Grinding Media Density
(Pgpy) [kg/m3] and Media Filling Rate (®gy) [-].

To capture suspension behavior and material transport, further parameters included
Grinding Media Mass (mgy,) [kg], Product Mass (m;) [kg], Volume Concentration
(c,) [-], Mass Concentration (c,,) [-], and Volume Flow through the mill (V) [ m3/s].
The physicochemical state of the suspension was characterized was characterized by
Temperature Difference between Mill Inlet and Outlet (AT)[°C], Zeta Potential
(¢) [mV], pH Value (pH) [-], o , and the Amount of Nitric Acid (HNO3) [mol/L].

This holistic measurement framework ensured that the mechanical, operational, and
physicochemical aspects of the grinding process were comprehensively captured,
providing a detailed basis for analyzing its relationship to particle size reduction, pro-
cess efficiency, and suspension stability.

Thermal monitoring encompassed inlet and outlet fluid temperatures to quantify heat
generation and potential thermal effects on suspension properties. pH values were sys-
tematically tracked to monitor potential chemical interactions between the grinding me-
dia, aluminum oxide particles, and process fluid. Electrical conductivity measurements
provided additional insights into suspension chemistry and potential contamination ef-
fects, as clearly demonstrated by the systematic conductivity increase shown in Figure
1.

The E,, values were directly measured during experimental operations, providing
precise quantification of energy input per unit mass of processed material and enabling
direct comparison with the milling system’s developed CFD-DEM Method simulation-
based generated E,,, data. The E,,, represents the energy required to grind or process a
material, normalized per unit mass, serving as a critical parameter for quantifying the
efficiency of energy utilization during material processing. These measured Em values
formed the primary validation targets for subsequent model development.

Validation Framework and Benchmark Models. The experimental framework was
designed to enable validation against the established stress-energy model proposed by



Kwade, which provides a fundamental framework for understanding grinding processes
in stirred media mills. Kwade's model is grounded in stress-energy principles, elucidat-
ing the relationship between the Intensity, Frequency and Energy of stress events in a
stirred media mill and their effect on particle comminution. The model incorporates
both the SN and the SE as critical variables, with these parameters influenced by multi-
ple process variables including dgy, Py, 1 Ves tz » € and Dy

The SE component of Kwade’s model incorporates a linear relationship with mgy,
and a quadratic dependence on vt, scaled by an empirical factor that accounts for media
properties. In parallel, the SN calculation integrates geometric and operational parame-
ters to quantify the frequency of particle-media interactions. Together, this theoretical
framework enables precise prediction of the energy demands for material size reduc-
tion, with its main value lying in its scalability and precision for optimizing industrial
grinding operations and improving energy efficiency.

2.2 CFD-DEM Method Simulations

Simulation Framework and Software Implementation. To complement experi-
mental observations and extract process parameters not accessible through experi-
mental measurements alone, two-way coupled CFD-DEM simulations were imple-
mented using Rocky DEM and Fluent CFD software packages from Ansys. This inte-
grated approach enabled detailed analysis of SE distributions, Shear Stress (t) [Pa]
fields, and dynamic particle interactions within the mill geometry at a level of detail
impossible to achieve through experimental measurements alone.

The comprehensive workflow for establishing and executing the coupled CFD-DEM
simulations is illustrated in Figure 3, which demonstrates the systematic approach re-
quired for successful integration of the two computational domains. The workflow en-
compasses geometry preparation, mesh generation, boundary condition specification,
and iterative coupling procedures that ensure accurate representation of the complex
fluid-particle interactions occurring within the grinding environment.
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Fig. 3. Comprehensive CFD-DEM simulation workflow showing the integration of
Rocky DEM and Fluent CFD with CAD geometry preparation, mesh generation, and
final simulation results including particle dynamics visualization

The CFD-DEM methodology represents a sophisticated computational approach where
fluid flow and particle dynamics are simultaneously solved with full coupling between
phases. The CFD component employs finite volume discretization to solve the govern-
ing fluid flow equations, while the DEM component tracks individual particle trajecto-
ries and collision dynamics. The two-way coupling ensures that particles influence fluid
flow through momentum exchange, while fluid forces affect particle motion, creating
a comprehensive representation of the grinding environment.

Geometry Modeling and Mesh Generation. The geometry modeling accurately rep-
resented the PML V-H mill configuration based on detailed engineering drawings, in-
cluding precise stirrer pin dimensions, spacing, and angular orientations. The rotor as-
sembly consisted of four grinding discs (70 mm diameter, 5 mm thickness) and one
stirrer head (43 mm height), with 19 mm spacing between adjacent discs, creating a
total rotor length of 159 mm within a shell of 179.5 mm length and 86.3 mm inner
diameter.

A critical preprocessing step involved creating the negative volume geometry, where
the solid rotor components were subtracted from the total mill volume to generate the
fluid domain required for CFD meshing. This negative volume creation was essential
to avoid interface zone detection errors that would prevent proper simulation setup. A
moving mesh approach was implemented to simulate stirrer rotation, with the model
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volume divided into inner and outer cell zones using a sliding mesh interface technique
to properly capture the complex flow patterns generated by the rotating stirrer.

The mesh generation strategy employed a finite volume method with non-conformal
interfaces between rotating and stationary domains. Mesh sizing was optimized to en-
sure individual particles did not exceed cell dimensions, with minimum mesh size set
to 0.0022 m and maximum size to 0.011 m based on the grinding media size range. The
k-epsilon turbulence model with standard wall functions was selected to capture the
complex flow patterns generated by the high-speed rotating stirrer, with gravity set to -
9.81 m/s? in the vertical direction.

Simulation Setup and Parameter Space. The simulation campaign was designed to
replicate experimental conditions while extending the parameter space to address com-
putational limitations. Simulations explored tip velocities of 6, 9, and 12 m/s, corre-
sponding to angular velocities ranging from 171.43 to 342.86 rad/s. These velocities
maintained consistency with experimental conditions while enabling investigation of
velocity scaling effects on grinding performance.

However, computational constraints necessitated the use of larger grinding media
sizes ranging from 755 to 2000 pm compared to experimental values of 214 to 800 pm
to maintain manageable particle numbers while preserving numerical accuracy. The
computational particle count scaling followed established practices, where simulating
grinding media sizes down to 214 um would have resulted in particle numbers exceed-
ing 10° under the specified filling conditions, rendering the simulations computation-
ally intractable on available hardware. ®GM was maintained at 80% to ensure con-
sistent stress conditions and energy transfer efficiency across all simulations, represent-
ing typical industrial operation conditions where the grinding chamber volume is opti-
mally utilized while maintaining effective particle circulation.

The Hertz-Mindlin contact model served as the foundation for particle-particle and
particle-wall interactions, providing physically realistic representation of collision dy-
namics through elastic-plastic deformation theory. Material property selection was
based on steel grinding media characteristics, with Young's modulus (E) [GPa] set to
200 GPa, Poisson's ratio to 0.3, density to 7850 kg/m?, and restitution coefficient to 0.5
for both particle-particle and particle-wall interactions. Static friction coefficients were
set to 0.5 for steel-on-steel contacts, while rolling resistance was configured at 0.1 to
account for surface roughness effects and energy dissipation during rolling contacts.
Adhesive forces were neglected based on the assumption of clean steel surfaces in aque-
ous suspension.

Product particles were not explicitly simulated to reduce computational burden,
based on the assumption that their kinetic energy was significantly lower than that of
grinding media and their motion closely followed fluid flow patterns. This approxima-
tion was validated through order-of-magnitude analysis of relative particle velocities
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and masses, confirming that product particle dynamics had minimal influence on grind-
ing media motion and stress distributions.

Convergence Criteria and Data Extraction. Simulation convergence was monitored
through multiple metrics, with energy dissipation serving as the primary indicator of
steady-state achievement. Each simulation was executed for a maximum of 1 second
simulation time, equivalent to 27.3-54.6 stirrer rotations depending on angular velocity.
This duration proved sufficient to achieve steady-state conditions, typically reached
within the first 0.1 seconds as evidenced by stabilization of energy dissipation rates and
particle velocity distributions.

The simulation validation and convergence behavior is comprehensively demon-
strated in Figure 4, which combines energy distribution analysis, velocity evolution,
and fluid flow visualization to validate the CFD-DEM methodology. The energy den-
sity distributions show distinct differences between one-way and two-way coupling ap-
proaches, with two-way coupling exhibiting higher energy peaks and more efficient
energy transfer. The velocity evolution plots demonstrate convergence to steady-state
conditions for both coupling methods, while the fluid streamline visualization reveals
the complex flow patterns generated by the rotating stirrer geometry.

62250400

4.6690+00

3.1120400

0,0006+00
[mst1]

Fig. 4. Comprehensive simulation validation showing (left) energy density distributions
and cumulative distributions comparing one-way versus two-way coupling, (center)
normal and tangential velocity evolution demonstrating convergence behavior, and
(right) fluid streamlines and velocity field visualization illustrating complex flow pat-
terns within the mill geometry

Parameters extracted from the simulations included SE distributions, 7, net M, on the
stirrer, and other dynamic interactions. SE distributions were estimated from collision
kinematics. Statistical analysis provided characteristic distribution parameters includ-
ing 10th, 50th, and 90th percentiles (SE10, SE50, SE90) to characterize the full range
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of stress conditions. Net M, measurements enabled direct comparison with experi-
mental data, while 7 distributions provided insights into fluid-phase energy dissipation
mechanisms.

2.3  NN-Based Parameter Extrapolation

Motivation and Framework Development. To address computational limitations that
prevented direct simulation of experimental grinding media sizes, a Neural Network-
Genetic Reinforcement Learning (NN-GRL) framework was employed to align simu-
lation outputs with experimental grinding media sizes. This innovative approach ena-
bled accurate extrapolation of simulation results to match the experimental bead size
range by leveraging data generated from simulations with larger beads.

The NN-GRL framework was specifically designed to bridge the parameter gap be-
tween simulation capabilities (755-2000 um) and experimental conditions (214-800
um), ensuring that the comprehensive insights gained from CFD-DEM simulations
could be effectively utilized for analysis of experimental data. This hybrid approach
ensured precise prediction of simulation parameters while maintaining consistency with
experimental conditions.

Network Architecture and Training Strategy. The NN architecture employed a feed-
forward design optimized for distribution prediction tasks, with input variables includ-
ing v, and dgy, and output variables comprising key SE distribution characteristics, net
M,, SN, and averaged 7. Rather than predicting complete distribution functions, three
characteristic parameters (SE10, SE50, SE90), representing the 10®, 50th, and 90th
percentiles of the SE distribution were extracted to reduce computational complexity
while preserving essential physical information about the grinding process.

Figure 5 illustrates the complete NN methodology, showing both the complex parti-
cle dynamics the network must learn to predict and its architecture for handling the
multi-dimensional parameter relationships. The spatial and temporal particle velocity
patterns demonstrate the sophisticated physics underlying the grinding process, while
the network training progression shows successful convergence to prediction accura-
cies suitable for engineering applications.
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Fig. 5. NN methodology showing (left) network architecture with input parameters (v,
dgun) and output parameters (SE10, SES0, SE90, M,, SN, 7), (right) training convergence
curve demonstrating error reduction over iterations, and (bottom) spatial-temporal par-
ticle velocity patterns illustrating the complex dynamics the network must learn to pre-
dict

Data preprocessing included comprehensive normalization procedures where input var-
iables were scaled by their respective orders of magnitude from the baseline simulation
(vy = 6 m/s, dgy = 755 pm) to reduce the span of variable magnitudes from 20 to 3
orders, significantly improving numerical stability and training efficiency. The training
database encompassed SE ranges from 107'° to 10™* J, net M, values from 0.87 to 7.00
Nm, and 7 measurements from 13 to 258 Pa after appropriate scaling normalization.

The NN-GRL algorithm combined Reinforcement Learning (RL) with Genetic Al-
gorithm (GA) optimization, executing iterative cycles to minimize prediction errors.
Training was conducted over 30 iterations with systematic monitoring of training and
validation errors to ensure optimal convergence. The training process demonstrated
characteristic rapid initial improvement followed by gradual refinement, with mean rel-
ative error stabilizing at approximately 0.2% after convergence. This error level was
deemed acceptable for engineering applications and below typical experimental uncer-
tainties.

Extrapolation Performance and Validation. Following training completion, infer-
ence was performed to generate results for all required v;-d,, combinations within the
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experimental parameter space. The extrapolation procedure successfully generated pre-
dictions for grinding media sizes down to 214 um, effectively bridging the gap between
computational and experimental capabilities.

Model validation employed multiple approaches to ensure prediction accuracy
across the full parameter space. Cross-validation procedures demonstrated consistent
prediction accuracy across all simulation conditions, while sensitivity analysis con-
firmed physically realistic behavior and appropriate scaling relationships. The success-
ful extrapolation enabled seamless integration of CFD-DEM insights with experimental
observations, providing a comprehensive dataset for subsequent analysis.

2.4  Symbolic Regression Methods

Problem Formulation and Theoretical Framework. The symbolic regression prob-
lem is formulated as discovering mathematical expressions f(x) that minimize predic-
tion error on experimental datasets D = {(x, y®?)}Vi=1 where x¥ € R represents in-
put features and y® € R denotes target values. This constitutes a mixed discrete-con-
tinuous optimization problem requiring simultaneous optimization of expression struc-
ture s € S and numerical parameters 6 € ©(s) , where S represents the space of syn-
tactically valid mathematical expressions and O(s) denotes the parameter space for
structure s.

The optimization objective combines prediction accuracy with structural parsimony
through the energy function:

E(s,0) = L(f:(X; 6),y)- (1 + 4s]) ()

where L(-,-) represents the loss function, |s| denotes expression complexity meas-
ured as node count, and A = 0.002 controls complexity penalization. Mathematical ex-
pressions are encoded as abstract syntax trees where internal nodes represent mathe-
matical operators and leaf nodes contain either input variables or numerical constants.

SA-MC Framework. The SA-MC framework combines simulated annealing for
global optimization with Markovian state transitions. While employing SA temperature
scheduling, the approach satisfies Markov properties through memoryless state transi-
tions where the next state depends only on the current state and move operators. The
methodology employs an MCMC approach where each state represents a unique math-
ematical expression encoded as a syntax tree.

Transition Probability Design and Move Operators. The transition mechanism imple-
ments probabilistic distributions over structural modifications using two strategies.
Strategy 1 employs a two-stage selection process that first randomly selects from five
weighted options [0.81, 0.61, 0.41, 0.19, 0] with probabilities [0.35, 0.3, 0.2, 0.1, 0.05],
where only the two lowest values (occurring 15% of the time) trigger size-preserving
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moves. Otherwise, the algorithm modifies tree size, with a 35% probability of expan-
sion and 65% probability of reduction. Strategy 2 favors unary insertion (40%) over
other move types (20% each), with one option disabled.

The framework employs five core operators: equal-arity replacement substitutes op-
erations while preserving tree structure; unary and binary insertion expand complexity
by introducing single-argument functions (sine, logarithm, square root) or two-argu-
ment operations (addition, multiplication, division) above existing nodes; unary re-
moval and subtree pruning reduce complexity by eliminating functions or replacing
operations with selected operands, preferentially retaining larger subtrees.

Variable selection within operators uses adaptive probability weighting where un-
used input variables receive double weight (2p) compared to utilized variables (p), en-
couraging comprehensive feature exploration while maintaining access to successful
variable combinations. The move selection strategy follows configurable probability
distributions designed to balance exploration with parsimony principles, as illustrated

in Figure 6.
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Fig. 6. Energy landscape visualization showing probabilistic state transitions between
expression structures S, through S, , with transition probabilities P, through B, illus-
trating the Metropolis acceptance mechanism and temperature-dependent exploration
behavior

SA Integration and Temperature Control. The MCMC exploration integrates with
SA through temperature-controlled acceptance probabilities. Given current state s, with
energy E(s,), candidate state s is accepted with probability:

P(accept) = min(1, exp(%E)) )

where AE = E(s") — E(s,) and T, denotes temperature at iteration t. Initial tempera-
ture Timax is determined through adaptive calibration executing 4,000 trial moves while
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iteratively adjusting temperature by factors of 1.5 or 2/3 until achieving target ac-
t

ceptance rate of 0.6. Linear cooling follows T, = Tpax — (Tmax — Tmin) - proweps
Constant Optimization Strategy. Following structural modifications, the framework
optionally applies MCMC-based refinement to numerical constants. This secondary
optimization employs bounded random walk transitions where the next parameter value
is generated as k;,; = k; + €; - 8, with direction €; € {—1, +1} randomly selected and
step size & adaptively controlled through exponential decay with factor 0.6 following
unsuccessful moves. The complete algorithmic workflow is shown in Figure 7.
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Fig. 7. Complete algorithmic workflow showing the integration of structural MCMC
exploration with constant optimization, including initialization procedures, move oper-
ator selection, Metropolis acceptance decisions, temperature scheduling, and conver-
gence monitoring mechanisms

Implementation Framework. The framework implements comprehensive protection
mechanisms ensuring robust evaluation across diverse input domains. Protected divi-
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sion returns unity when denominator magnitude falls below threshold € = 0.01, pre-
venting singularities while maintaining mathematical interpretability. Protected loga-
rithm operations handle negative arguments through absolute value transformation, re-
turning zero for arguments below 0.001 to avoid numerical instabilities. Protected
square root applies absolute value preprocessing, while protected exponentiation
bounds exponents to [-4, 4] and operates on absolute bases.

Expression evaluation employs recursive tree traversal with vectorized NumPy op-
erations, achieving computational complexity O(|s| - N) where |s| represents expres-
sion size and N denotes dataset size. Overall algorithmic complexity scales as O(G -
S|avg - N) where G represents generations, |s|,,, denotes average expression size (typ-
ically 10-20 nodes), and N indicates dataset size. Individual operation complexities
contribute: expression evaluation O(Js| - N), move generation O(|s|), energy computa-
tion O(N), and constant optimization O(I - N) where I represents MCMC iterations

(15).

The energy function supports multiple loss functions through modular evaluation
architecture. Mean Absolute Percentage Error (MAPE) provides scale-invariant assess-
ment particularly suitable for materials science applications, while the coefficient of
determination (R?) measures explained variance proportion, offering intuitive model
quality assessment.

Benchmark Symbolic Regression Frameworks. To evaluate SA-MC performance,
we benchmark against five established frameworks representing diverse algorithmic
paradigms. PySR combines evolutionary algorithms with gradient-based optimization
through multi-population genetic programming, leveraging Julia's SymbolicRegres-
sion.jl backend for efficiency while providing Python interface and advanced features
such as simulated annealing, automatic complexity control, and dimensional analysis.
GPLearn follows standard tree-based genetic programming principles with scikit-learn
compatibility, offering simplicity and standardized fit/predict interfaces. PhySO intro-
duces physics-informed symbolic regression by embedding dimensional analysis and
physical constraints directly into the search process, combining genetic programming
for structural discovery with gradient-based parameter refinement. SyBReN applies
physics-inspired, data-driven modeling in applied industrial contexts such as battery
electrode processing. Together, these frameworks span evolutionary, physics-informed,
and neural-network-driven approaches, enabling comprehensive evaluation across mul-
tiple methodological dimensions.

3 Results and Discussion

3.1 CFD-DEM Simulation and NN Extrapolation

The comprehensive CFD-DEM simulation campaign generated a detailed database en-
compassing nine distinct operating conditions with systematic variation of tip velocity
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and grinding media diameter. Eight of the nine planned simulations were successfully
completed, with simulation 3 (12 m/s, 755 um) experiencing convergence issues due
to high computational complexity that prevented complete data extraction. The missing
values from simulation 3 were subsequently filled through interpolation using the
trained NN on the remaining dataset to ensure completeness of the simulation database.
The complete simulation trends are illustrated in Figure 8, which summarizes the ex-
tracted parameters (M;, t, SE10, SE50) across simulated d,, and v;.
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Fig. 8. CFD-DEM simulation results for (top left) M, , (top right) z, (bottom left) SE 10,
and (bottom right) SE50 as a function of dg,. All quantities increase monotonically
with dg, and v,, though data at v,=12 are limited to two d,, sizes.

The parameter sensitivity analysis reveals the complex relationships between operating
conditions and grinding performance, as demonstrated in Figure 9. The multi-parameter
investigation shows systematic scaling of particle velocities with rotational speed, ma-
terial properties, and grinding media diameter, providing quantitative validation of the
physical relationships underlying the grinding process.
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Fig. 9. Multi-parameter sensitivity analysis showing normal and tangential velocity re-
sponses to (left column) v, variations (6, 9, 12 m/s), (center column) E variations (1, 50,
200 GPa), and (right column) dg),variations (1, 3, 5 mm), demonstrating the complex
parameter relationships the NN must capture for accurate extrapolation

SE distributions exhibited characteristic behavior with distribution parameters showing
systematic dependence on operating conditions. Higher v, resulted in broader distribu-
tions with increased mean SE, consistent with enhanced grinding efficiency. The SE10,
SES0, and SE90 values demonstrated clear scaling relationships with both v, and d,,,
providing quantitative validation of theoretical grinding models.

Net M; measurements from simulations ranged from 0.87 to 7.00 Nm across the
parameter space, with systematic increases corresponding to higher v, and larger dgy,.
These M, values provided essential validation data for comparison with experimental
measurements and served as key inputs for energy efficiency calculations. The M, scal-
ing followed expected trends, with larger media requiring greater energy input due to
increased collision frequencies and intensities.

T measurements revealed significant variation across operating conditions, ranging
from approximately 13 to 258 Pa after appropriate scaling. The systematic variation of
7 with operating parameters provided insights into fluid-phase energy dissipation
mechanisms and their contribution to overall grinding efficiency. Higher t correlated
with increased v, and enhanced fluid turbulence in high-energy grinding conditions.

NN Extrapolation Results. The trained NN successfully extrapolated simulation re-
sults to experimental grinding media sizes, generating comprehensive predictions for
all experimental conditions. The extrapolation process produced a complete dataset
covering the experimental parameter space, with dg), ranging from 214 to 800 um and
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v, spanning 6 to 12 m/s. Notably, the NN was trained exclusively on the eight complete
CFD-DEM simulations, with the interpolated data from simulation 3 excluded from the
training process to maintain data integrity. Figure 10 shows the NN-augmented results,
which reproduce the CFD-DEM values at simulated bead sizes and extend predictions
to the experimental range. Unlike the monotonic CFD curves, the augmented results
reveal non-linear U-shaped behavior with distinct minima, consistent with the existence
of efficiency optima.
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Fig. 10. NN—-augmented results for (top left) M, , (top right) z, (bottom left) SE 10, and
(bottom right) SE50. The NN reproduces CFD-DEM results at simulated dgy,
(755,1200,2000) and extends predictions to experimental used d,, (214,375,800). The
augmented curves reveal non-linear U-shaped behavior with minima at intermediate
dgu, highlighting the existence of an optimal grinding media diameter.

Comparison between extrapolated and experimental results showed agreement for di-
rectly measurable quantities. The extrapolated M, values demonstrated physically rea-
sonable scaling with dg), and v, , with predicted decreases in specific M, as media size
increased. This scaling behavior reflected the transition from energy-intensive fine
grinding to more efficient coarse grinding regimes.

SE distribution parameters exhibited expected trends, with smaller media sizes gen-
erally producing lower individual stress energies but higher stress frequencies. The
SE50 values for experimental conditions ranged from approximately 2.3x107% to
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6.0x1078 J, representing typical stress energies for fine grinding applications. The sys-
tematic scaling of SE with dg), provided quantitative validation of fundamental grind-
ing theory.

Integrated Dataset Validation and Quality Assessment. The combined experimental
and simulation datasets provided comprehensive coverage of the grinding parameter
space, with experimental data capturing real-world process behavior and simulation
data extending insights into stress distributions and flow field characteristics not acces-
sible through experimental measurements alone. The NN extrapolation successfully
bridged the parameter gap between simulation and experimental conditions, enabling
seamless integration of both data sources.

Cross-validation between experimental and computational results demonstrated sat-
isfactory agreement for overlapping parameter ranges, confirming the reliability of both
methodologies. The integration of experimental measurements with CFD-DEM simu-
lation data provided unprecedented insight into grinding physics, combining the accu-
racy of experimental observations with the detailed process understanding enabled by
computational analysis.

The NN extrapolation methodology proved highly effective in bridging computa-
tional and experimental scales, with prediction accuracies well within engineering tol-
erances. The comprehensive validation procedures ensured that the integrated dataset
accurately represented grinding physics across the full parameter space, providing a
robust foundation for subsequent symbolic regression analysis and physics-based
model development.

The resulting integrated dataset encompassed process configuration input parame-
ters, measured parameters and simulation-based calculated parameters. This compre-
hensive framework provided the necessary data richness to capture the complex physics
governing wet ball grinding processes, and serves as the foundation for subsequent
symbolic regression analysis aimed at deriving physics-based models for critical grind-
ing parameters. The comprehensive parameter coverage and high-fidelity data genera-
tion methodology ensure robust model discovery capabilities for advancing the funda-
mental understanding of wet ball grinding physics and particle size reduction mecha-
nisms.

3.2  Symbolic Regression Methods Benchmark Performance Analysis

The evaluation of symbolic regression frameworks reveals that optimal performance
depends critically on problem characteristics rather than universal algorithmic superi-
ority. This investigation examines six frameworks—SA-MC, PySR, PhySO, SyBReN,
gplearn, and SA—across benchmark equations and experimental grinding data to
demonstrate that successful process optimization requires strategic method selection
and ensemble approaches.
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Benchmark Performance Analysis. The evaluation across ten benchmark equations
reveals significant performance variations dependent on equation complexity and struc-
tural characteristics. The results demonstrate that optimal framework selection is inher-
ently problem-dependent and benefits from ensemble approaches rather than single-
method solutions.

The complete benchmark suite in Table 1 and Table 2 ranges from simple propor-
tionalities to complex nested expressions, with equations numbered 1-10 from top to
bottom in order of increasing complexity. For simple equations (Eq.1-Eq.3), all frame-
works achieved near-perfect performance with R? values exceeding 0.99, confirming
baseline competence across methodologies. However, performance divergence be-
comes pronounced as complexity increases, with each framework exhibiting distinct
strengths and limitations. The benchmark suite was constructed using synthetic da-
tasets, with approximately 200 data points generated per equation.

Table 1. Benchmark equations with comparative SA and SA-MC performance results
showing execution times and R? accuracy values across increasing mathematical com-
plexity from simple proportionalities to nested expressions with dimensionless groups

. R2S | t SA- | R? SA-
Equations t SA
A MC MC
Y, = 05- ¥ 1.6 1 17 1
Sl =25-y-n 185 |1 14 0.99999
-t
N = Y4—D 157 |1 20 0.96
T
C
k, = 0.98 + 0.02- (C—")Z-25 747 | 0.634 | 18 0.74
c
1
Vo=g modgonedpol 2oz, 3876 | 1 4735 | 0.99999
1 .
SE = (5) X3 m? 257 |1 50 0.92265
t
X(t) = x9 + (Xeng — Xo) - m 33.5 0.918 35 0.99996
. . — 10y.
o = O3V 1% cos @) 113.1 | 0619 | 129.1 | 071
m
A (1 - ) VoS
1
dpx = 05 '[1 - A—] 962 | 0303 |22.73 | 0.9245
1+ (As 'I}'Ycrit) 1
V*
18-1-k-In(d)
te = ¢ ) der , 113.1 | 0.0006 | 30.47 | 0.00707
ppp — Pr)- p’ w
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Table 2. Comprehensive comparative performance of six symbolic regression frame-
works (gplearn, SyBReN, PySR, PhySO) across ten benchmark equations, showing ex-
ecution times and R? accuracy values for systematic algorithmic capability assessment.
This table reports the performance of the remaining methods, complementing the re-
sults presented in Table 1.

¢ gplearn R? gplear | t SyBR | RZ Sy |t PyS | R? PyS { phySO R% phyS
n eN BReN R R O

0.3 1 0.02 1 9.86 1 44 1

0.85 0.99993 0.0561 1 10.07 1 46 1

1.29 0.99997 5.89 1 9.93 1 30 1

0.95 0.99069 36.7 0.982 10.23 0.99993 | 249 0.99026
2.97 0.99862 75.8 1 10.06 1 158 1

1.08 0.99211 0.064 1 10.91 1 55 1

0.85 0.94669 160.2 0.955 9.82 1 453 0.63686
0.87 0.87557 286.9 0.739 10 1 108 0.80592
0.73 0.75964 345.97 0.952 10.06 0.98283 | 252 0.73137
0.74 0.0745 330.7 0.71 32.72 0.99888 | 747 0.93313

The evaluation demonstrates complementary strengths across frameworks for process
model discovery from empirical data. PySR achieved exceptional performance, reach-
ing R? > 0.99 for seven equations through multi-population evolutionary optimization
with Julia backend, making it optimal when maximum accuracy is prioritized.

PhySO maintained physical consistency with R* > 0.90 for dimensionally structured
equations, providing invaluable theoretical validity for well-understood systems.
SyBReN displayed impressive computational efficiency with R? > 0.95 for the first six
equations and rapid execution, ideal for real-time applications.

SA-MC, as an algorithmic approach still in the early stages of development and cur-
rently lacking deep learning components (unlike PhySO and SyBReN), demonstrated
consistent moderate performance across different complexity levels without exhibiting
complete failures. Under certain testing conditions, it even outperformed gplearn, high-
lighting its potential for exploratory process modeling with experimentally accessible
parameters. As shown in Table 1, the comparison also includes the classic SA algo-
rithm, providing a direct baseline. Notably, SA-MC delivered substantial improve-
ments over SA in challenging cases—for example, Eq. 9 improved from R? = 0.303 to
R?=0.9245, and Eq. 10 from R? = 0.0006 to R* = 0.00707.
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gplearn, while showing accuracy degradation for complex expressions (R* <0.70 for
challenging equations), provides computational efficiency and scikit-learn integration
advantages for rapid prototyping and educational applications.

The benchmark results visualized in Figure 11 reveal distinct performance patterns
informing framework selection strategies. Simple equations are solved almost instantly
by all methods, while complex cases introduce significant variability, with some sys-
tems requiring orders of magnitude more computation.
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Fig. 11. Performance analysis across mathematical complexity levels showing execu-
tion time heatmap with color-coding and accuracy-efficiency scatter plot with perfor-
mance threshold reference lines

SA-MC reliably appeared near the optimal region, reaching accuracy levels above R?
> 0.95 for multiple equations while keeping computation times competitive. The
method shows particular promise as a robust screening tool for initial model discovery
before applying specialized methods for refinement. SA-MC's performance on bench-
mark equations illustrates current capabilities and development opportunities. For the
kinetic size evolution equation x(t) (Eq.7), the method captured the overall functional
form with some deviation in transition regions. The particle size correlation d,, (Eq.9)
presented greater challenges, with SA-MC recovering the general relationship structure
but showing variability in fine-scale fitting as shown in Figure 12, reflecting areas for
algorithmic refinement in handling complex nested expressions.
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Fig. 12. SA-MC equation recovery for benchmark equations: Eq. 7 (x(t), left) and Eq.
9 (dpy, right).

Process Engineering Applications. Application to experimental grinding data reveals
how framework selection impacts solution quality and practical utility. Each method
discovered different mathematical relationships, reflecting distinct algorithmic ap-
proaches and optimization strategies.

Table 3. E,, prediction results showing discovered mathematical expressions with R?
accuracy values and MAPE error metrics, demonstrating trade-offs between prediction
accuracy and parameter accessibility for process control applications

Method Equations R? MAPE
086382t - [t; + (dou -1° + v,)°
PySR Ep = z:1tz + [ou '] 0.9943 | 0.2907
my
En
SYBReN | 0.94-t; - (425102 - dZy — 1.79-10%) +2.2-10* - m, | 0.9809 | 0.7870
- ™
PhySO E, = —104694.23271 -d%,, -n®- (c, - t; — t;) 0.9027 | 0.9050
SN - d3,, - v?
PySR Ep = 3999.0002 - (—— 21— 0.9999 | 5-10°
14
SN -dg,, - v?
SyBReN Ep = 1003.2136~<pGM — oMt ) 0.9999 | 0.0009
14
PhySO E, = 93705.7462827001 - t, - d%,, - n® — v? 0.8915 | 0.8455
demy -5783-dgym
SA-MC o, M7 0.8808 | 26.228
E,=v; -t,
n-t; v+ th
PySR E,= ——t % 0.9664 | 0.1505
my, +n
PhySO E, = 013284-n-t,- v2-(0.38737 — c,) 0.9274 | 0.2867
SyBReN E,, = 0.000266 - SN - d2,, - v} 0.7527 | 0.2531

The Em equation results reflect three distinct dataset configurations that reveal the
frameworks' ability to reconstruct theoretical relationships from different parameter
combinations. The first three equations were generated using datasets without SN and
SE parameters, where Em values came from simulation. Remarkably, frameworks were
able to discover relationships incorporating the underlying physics that SN and SE rep-
resent—stress-related parameters (like circumferential velocity, media diameter, and
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rotational frequency) and energy-related quantities—even without explicit access to
these derived variables.

The following four equations used datasets including SN and SE as input parameters,
with Em also from simulation. These results demonstrate how frameworks leverage
pre-calculated theoretical quantities to achieve exceptional accuracy, with PySR and
SyBReN reaching R? values of 0.99999.

The final three equations represent the most practically relevant scenario: SN and SE
from simulations as inputs, but Em measured experimentally. This configuration tests
the frameworks' ability to predict real measured quantities using simulation-derived
theoretical parameters, achieving R? values ranging from 0.75 to 0.93.

SA-MC discovered relationships using experimentally accessible parameters,
achieving R?=0.8808 with MAPE = 26.2289 for specific energy prediction. The frame-
work demonstrated ability to identify stress-energy relationships through experimental
parameters, incorporating blocks containing mg,,, velocity-related terms, and geomet-
ric factors that align with stress number theory.

Different frameworks discovered exponential, rational, and polynomial relation-
ships, suggesting multiple valid mathematical representations of the underlying physi-
cal process. High-accuracy solutions consistently required simulation-derived parame-
ters, while experimental-only approaches achieved moderate accuracy through com-
plex nonlinear combinations of controllable variables.

Notably, several discovered expressions show remarkable correspondence with es-
tablished theoretical models. The Kwade energy model (3) [13] provides the theoretical
foundation for specific energy in grinding:

__@G(-®  |ntz| .3 e
SN-SE _ (-gep (G=9)-cy |dgu| “CM PoM Vi
Em = = 3)
iy Ly

In this Kwade energy model, the SN is represented by the fraction preceding the multi-
plication with the SE; its leading block contains @gg , €, and ¢, and is typically constant
for a given process configuration. The SE is given by the second block, which includes
deu » Pem > and v,. This separation illustrates how several of the tested symbolic re-
gression frameworks capture both the process-dependent frequency of SN and the en-
ergy transferred per event SE.

Most of SyBReN’s E,,, found models incorporate a block containing pgp , SN, dgy
, Vg, and that corresponds directly to key components of the Kwade theoretical frame-
work shown above. This structural alignment validates that the frameworks can recover
physically meaningful relationships, even when not explicitly constrained by theoreti-
cal models.
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Table 4. SN prediction results showing discovered mathematical expressions with R?
accuracy values and MAPE error metrics for different symbolic regression frameworks

Method Equations R? MAPE
SR oy — 007628 17 - (n + 2.08341) 09943 | 0.0046
Y - (dom + 0.00401)* : :
t; n
SyBReN SN = 194718740 n -t +27 - 25 0.9809 | 0.1064
GM
SA-MC SN = t; - (11-n)5% 0.9630 | 0.1680
SN = t; n-(271126041.89809
PhySO 0.9543 | 0.1641
— 542252085.79618 - ¢,)
129 4, n
SyBReN SN= "2 0.7790 | 0.5021
dGM
tZ-n (n— 0804
gplearn SN = % 0.6204 | 0.7072
GM

The diversity of discovered expressions for stress number prediction illustrates the data-
dependent nature of symbolic regression outcomes. PySR achieved near-perfect accu-
racy (R?=0.9943, MAPE = 0.2907) using accessible process parameters, demonstrat-
ing the method's ability to reconstruct the relationships underlying SN through combi-
nations of fundamental variables like d,,, v;, and operational parameters.

SyBReN generated comparable accuracy (R? = 0.9809) for stress number prediction,
showing consistent performance while maintaining computational efficiency. The dis-
covered stress number expressions consistently featured parameter combinations in-
volving d;y, v;, and rotational parameters, effectively reconstructing the theoretical
basis of stress number calculations through empirical discovery.

PhySO produced physically consistent expressions but with reduced accuracy (R? =
0.9027), illustrating the trade-off between dimensional correctness and empirical fitting
in complex systems.

SA-MC discovered stress number relationships using experimentally accessible pa-
rameters, incorporating blocks containing media-related terms and velocity factors that
align with stress number theory, though achieving moderate accuracy levels as expected
for a developing framework.

Table 5. Comprehensive x5, prediction results showing diverse mathematical expres-
sions with accuracy metrics, highlighting universal challenges in particle size evolution
modeling and identification of physically meaningful scaling relationships
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Method Equations R? MAPE
55537.81899
PySR Xs0 = V 0.9403 | 0.3698
(M, — 0.47214)(t; + m)
PvSR - 377.46445 - M 1.048178 | 0.9208 | 0.6506
y ¥50 = (E,, + 16863.617)(—SE -n + ¢,) ’ ’
PhySO =-SE+T 826327.22129 0.9183 | 0.7215
y Xs50 = M, - t, v, — 590.37347 ’ ’
PySR 911.82623 - mp 0.9027 | 0.5229
X = . .
Y SO M2 t; + 194.8095
eSO B 77516.55773 - n 08820 | 05540
y 50 = (M, v, - t; + 1428966 -n+ n) - In(n) ’ ’
SyBReN _ 10085244 0.8692 | 0.6309
ybBRe Y50 = M, -t + 2n ’ ’
SyBReN _ 6621395 0.8348 | 0.3785
yBRe 0T M+ V ’ ’
_ 0.5
PhySO ‘o = (T o 224310815.84904) 08274 | 1.5749
M, -t;-vt
~ 3453.73 - mgn 08198 | 04503
SYBREN | Xs0 = p e ew - (SE - (B —m, - £,) + 1.877) | 08198 | 0459

Median particle size prediction presented the greatest challenge across all frameworks.
Multiple particle size percentiles were evaluated (x;, Xsq, X9 ), With x5, delivering the
best results across methods, though even these optimal results remained challenging.
The best-performing methods struggled, with PySR reaching R? = 0.94 at best, indicat-
ing fundamental limitations of purely empirical approaches for complex multi-physics
grinding processes.

SA-MC achieved relatively low numerical accuracy but demonstrated capability in
identifying the scaling relationship (4) This relationship captures essential physical de-
pendencies and relatively aligns with established grinding theory expectations. While
quantitative performance requires development, SA-MC's ability to extract physically
meaningful parameter combinations represents capability for process understanding:

x50 0 T My - )
Dimensional Consistency. Symbolic regression does not inherently enforce dimen-
sional consistency unless explicit constraints are applied. Several identified equations

achieve excellent predictive accuracy but lack balanced units between equation sides.
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Large numerical constants (e.g., 3999.0002, 93705.746) effectively absorb hidden unit
conversions, resulting in strong empirical fits but limited physical interpretability.

Examples include the fourth E,, equation yielding near-perfect fits while relying on
constants to compensate for dimensional mismatch, and the second x5, equation pre-
dicting trends accurately despite mixing incompatible dimensions. Conversely, the
fifth, sixth, and eighth E,, equations maintained full dimensional consistency with cor-
rect [m?/s?] units.

While frameworks like SyBReN and PhySO enable dimensionality analysis and unit
constraint enforcement, their application substantially reduced predictive performance,
likely due to the small dataset, modeling difficulty for E,,, SN, and xz,, and wet ball
grinding's multiphysics complexity.

Framework Selection and Optimization Strategy. In Figure 13 the correlation anal-
ysis revealed complex interdependencies between process parameters and grinding per-
formance metrics. Strong negative correlations emerged between circumferential ve-
locity and median particle size, confirming expected energy input relationships.
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Fig. 13. Correlation matrix and feature importance analysis showing Pearson correla-
tion coefficients between grinding performance metrics (E,,, SN , x5,) and operational
variables including circumferential velocity, media properties, and process conditions

Feature importance analysis identified circumferential velocity as the dominant factor
across metrics, with media diameter showing secondary importance for stress-related
parameters. These patterns validate physical relationships captured in symbolic regres-
sion expressions despite numerical accuracy limitations.

The comprehensive evaluation demonstrates that optimal performance requires stra-
tegic framework selection based on problem characteristics. When maximum accuracy
is paramount with simulation-derived parameters available, PySR provides superior



30

performance with computational costs justified by exceptional quality. For dimensional
consistency and physical interpretability, PhySO offers optimal accuracy-theoretical
soundness balance. When rapid execution is critical, SyBReN provides competitive ac-
curacy with efficient inference. When experimental parameters are prioritized, SA-MC
demonstrates consistent performance avoiding complete failure while providing inter-
pretable results.

Optimal symbolic regression performance requires ensemble strategies rather than
single-method approaches. Each framework excels in different scenarios—PySR for
accuracy, PhySO for physics consistency, SyBReN for efficiency, SA-MC for robust-
ness. Combining strengths addresses individual limitations.

Running multiple frameworks provides confidence assessment and reveals alterna-
tive mathematical representations. Hybrid approaches can utilize high-accuracy simu-
lation-based expressions for design optimization while maintaining interpretable exper-
imental-parameter relationships for process control.

Framework selection impacts both model accuracy and practical implementation
feasibility. High-accuracy expressions require simulation support, creating computa-
tional bottlenecks in real-time optimization. Experimental-parameter expressions ena-
ble direct process control with reduced precision. Successful optimization balances ac-
curacy with implementation constraints, often favoring moderately accurate, directly
implementable relationships over highly accurate but computationally demanding al-
ternatives.

These findings highlight a central trade-off: unconstrained symbolic regression ef-
fectively generates accurate empirical surrogates at the cost of physical interpretability,
while dimensionally constrained approaches preserve validity but may underperform
in data-limited, process-complex scenarios. Future work could address this through di-
mensionless m-groups (Buckingham's n-theorem) or refined constraint strategies bal-
ancing accuracy with interpretability.

Correlation Analysis versus Symbolic Regression. The correlation analysis reveals
important disconnects: not all parameters in discovered equations score highly in cor-
relation analysis. This commonly occurs when comparing symbolic regression with
correlation or feature importance scores, reflecting fundamental approach differences.

Correlation analysis captures linear pairwise relationships, while symbolic regres-
sion discovers nonlinear multivariate interactions. Variables may show weak individual
correlation but become critical when combined through multiplication, division, or ex-
ponential operations. For E,, equations, terms like vZ or dg,, may not correlate strongly
individually, but their interaction with SN, p ., , and mgy, creates predictive power.

Feature importance metrics are typically normalized or model-specific, while sym-
bolic regression may exploit parameters with small raw influence but large structural
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importance. The framework balances fit quality with simplicity, sometimes retaining
variables appearing unimportant by correlation because they improve structural gener-
alizability through dimensional balancing or scaling effects.

Multicollinearity complicates this relationship. Correlated inputs like o, PH , and ¢
may have importance distributed across multiple correlation coefficients, while sym-
bolic regression selects specific combinations. This fundamental difference means cor-
relation identifies features tracking output linearly, while symbolic regression deter-
mines which feature combinations explain output through complex interactions.

The results demonstrate that advancing symbolic regression for process engineering
requires moving beyond single-method approaches toward integrated frameworks lev-
eraging complementary algorithmic strengths. Rather than seeking the "best" method,
focus should shift to optimal combination strategies adapting to specific problem char-
acteristics and application requirements. This data-dependent optimization acknowl-
edges that symbolic regression success depends critically on alignment between algo-
rithmic capabilities and problem structure, suggesting future developments should em-
phasize ensemble methods and adaptive framework selection rather than universal al-
gorithmic improvements.

Model Generalizability and Limitations. The generated Em, SN, and xg,models
achieve high accuracy on the experimental dataset but do not guarantee generalizability
to other milling systems, materials, or configurations. The absence of d;,, from discov-
ered Xxso equations, despite extensive literature demonstrating its critical role in particle
size evolution, exemplifies this limitation. While equations describe the current dataset
effectively and could enable process automation in identical industrial settings, they
would likely deliver inaccurate results for different systems.

However, models contain generalizable components aligning with established the-
ory. SN equations feature tn and d,, blocks, while the SyBReN E,,, equation incorpo-
rates blocks with p ., , SN, dgy, v, and mp corresponding directly to the Kwade energy
model, validating physical relevance beyond specific experimental conditions.

4 Conclusion and Outllok

This study demonstrates the successful integration of experimental grinding data with
CFD-DEM simulations through NN extrapolation and symbolic regression frame-
works, establishing a comprehensive methodology for discovering interpretable math-
ematical models in wet ball grinding processes. The hybrid approach combining labor-
atory experiments with computational simulations enabled extraction of process param-
eters previously inaccessible through experimental measurements alone, particularly
stress energy distributions and shear stress fields that govern particle breakage mecha-
nisms.
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The systematic benchmarking of six symbolic regression frameworks revealed that
optimal model discovery requires strategic method selection based on specific applica-
tion requirements rather than universal algorithmic superiority. PySR demonstrated ex-
ceptional accuracy when simulation-derived parameters were available, achieving R?
values exceeding 0.999 for energy models incorporating stress number and stress en-
ergy terms. PhySO maintained dimensional consistency crucial for theoretical validity,
while SyBReN provided computational efficiency essential for real-time applications.
The in this work developed SA-MC framework, despite moderate numerical accuracy,
successfully identified physically meaningful parameter relationships using experimen-
tally accessible variables, demonstrating potential for industrial deployment where sim-
ulation support remains impractical.

Discovered mathematical expressions exhibited remarkable alignment with estab-
lished theoretical frameworks, particularly the Kwade energy model. Multiple frame-
works independently recovered parameter blocks containing p, , SN, dgy, v¢, and mp
that correspond directly to theoretical stress-energy relationships, validating that data-
driven approaches can reconstruct fundamental physics without explicit theoretical
constraints. However, the absence of d,, from particle size evolution models and di-
mensional inconsistencies in some high-accuracy expressions highlight the inherent
tension between empirical accuracy and physical interpretability.

The primary limitation concerns model generalizability beyond the specific experi-
mental configuration. While discovered expressions achieve high accuracy on training
data and contain theoretically meaningful components, their applicability to different
mill geometries, materials, or operating conditions remains unvalidated. The small da-
taset size and focus on aluminum oxide processing restricts the scope of conclusions.
Additionally, particle size prediction proved challenging across all frameworks, with
best-performing methods achieving R? values below 0.95, indicating fundamental lim-
itations in purely empirical approaches for complex multiphysics processes.

Looking forward, this research establishes the foundation for advanced process moni-
toring and control systems in industrial grinding operations. Future development will
focus on integrating discovered particle size evolution models into a Digital Twin
framework with real-time mill communication capabilities. As illustrated in Figure 14,
this system enables dynamic forecasting of grinding progression, predicting time-to-
target particle size through continuous model updating based on live sensor data. The
Digital Twin architecture incorporates torque measurements, conductivity monitoring,
and periodic particle size verification to refine predictions throughout operation, trans-
forming static empirical models into adaptive process optimization tools.
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Fig. 14. Digital Twin framework for real-time particle size evolution forecasting in wet
ball grinding, showing integration of symbolic regression models with live mill sensor
data, automated particle size analysis, and predictive control optimization for achieving
target specifications.

Future work will also address several critical areas to advance symbolic regression
applications in process engineering. Expanding experimental datasets across diverse
materials and mill configurations would enhance model generalizability and reveal uni-
versal scaling relationships. Incorporating dimensionless groups through Buckingham
n-theorem could balance empirical accuracy with theoretical consistency. Development
of ensemble methods combining multiple symbolic regression frameworks could lev-
erage complementary strengths while mitigating individual limitations. Integration with
reinforcement learning algorithms would enable autonomous process optimization, ad-
justing operating parameters in real-time based on evolving model predictions.

The transition from laboratory-scale model development to industrial implementa-
tion requires addressing computational efficiency, sensor reliability, and model uncer-
tainty quantification. Successful deployment demands robust frameworks handling
noisy industrial data, partial sensor failures, and process disturbances while maintaining
prediction accuracy. The Digital Twin concept represents a paradigm shift from reac-
tive process control to predictive optimization, potentially reducing energy consump-
tion, improving product quality, and minimizing operational costs across comminution
operations.

This work demonstrates that symbolic regression can bridge the gap between black-
box machine learning and mechanistic modeling in process engineering, providing in-
terpretable models that maintain physical relevance while achieving competitive pre-
dictive performance. The successful reconstruction of theoretical relationships from
empirical data validates the approach's potential for discovering novel process under-
standing and enabling next-generation industrial automation systems.
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Code Availability: The SA-MC symbolic regression framework developed in this
study is available as open-source software at [https://github.com/ah-
medeisa?2]. Benchmark equations and evaluation scripts are included in the reposi-

tory.

References

Rittinger, P.R.: Lehrbuch der Aufbereitungskunde. Ernst & Korn (1867).
Kick, F.: Das Gesetz der proportionalen Widerstinde. Leipzig (1885).
Bond, F.C.: The third theory of comminution. Trans. AIME 193, 484-494 (1952).
Hukki, R.T.: Proposal for a solomonic settlement between the theories of Rittinger, Kick
and Bond. Trans. AIME 220, 403—408 (1961).
5. Meloy, T.P.: Dimensional analysis for size reduction. Powder Technology 7(2), 109—-112
(1973).
6. Austin, L.G., Klimpel, R.R., Luckie, P.T.: The Process Engineering of Size Reduction: Ball
Milling. SME, New York (1984).
7. Herbst, J.A., Fuerstenau, D.W.: Fundamentally based load control strategy for tumbling
mills. Powder Technology 75(1), 21-28 (1993).
8. Napier-Munn, T.J., Morrell, S., Morrison, R.D., Kojovic, T.: Mineral Comminution Cir-
cuits: Their Operation and Optimization. JIKXMRC, Brisbane (1996).
9. King, R.P.: Modeling and Simulation of Mineral Processing Systems. Butterworth-Heine-
mann, Oxford (2001).
10. Hinde, A.L., et al.: Population balance modeling of milling. Minerals Engineering 17(11—
12), 1193-1200 (2004).
11. Austin, L.G., Bagga, P.: An analysis of fine dry grinding in ball mills. Powder Technology
28(1), 83-90 (1981).
12. Kwade, A.: Wet comminution in stirred media mills—research and its practical application.
Powder Technology 105(1-3), 382-388 (1999).
13. Kwade, A., Schwedes, J.: Breaking characteristics of different materials and their effect on
stress intensity and stress number in stirred media mills. Powder Technology 122(2-3), 109—
121 (2002).
14. Kwade, A.: A stress model for the design of stirred media mills and its application to nano-
particle production. Chemical Engineering & Technology 28(7), 718-724 (2005).
15. Breitung-Faes, S., Kwade, A.: Prediction of product size distributions in stirred media mills.
Particuology 6(4), 321-329 (2008).
16. Stenger, F., Mende, S., Schwedes, J.: Comminution in stirred media mills and nanomaterials
production. Powder Technology 105(1-3), 333-338 (1999).
17. Mende, S., Stenger, F., Schwedes, J.: Dispersing and grinding of nanoparticles in a stirred
media mill. Chemical Engineering & Technology 26(3), 341-346 (2003).
18. Fuerstenau, D.W., Abouzeid, A.-Z.M.: The energy efficiency of ball milling in comminu-
tion. International Journal of Mineral Processing 67(1-4), 161-185 (2002).
19. Kwade, A., Blecher, L.: Scale-up of stirred media mills. KONA Powder and Particle Journal
15,91-102 (1997).
20. Jankovi¢, A., Valery, W., Davis, E.: Cement grinding optimization. Minerals Engineering
17(11-12), 1075-1081 (2004).
21. Napier-Munn, T.J., Morrell, S., Morrison, R.D., Kojovic, T.: Mineral Comminution Cir-
cuits: Their Operation and Optimisation. JKXMRC Monograph Series in Mining and Mineral
Processing No. 2, University of Queensland (1996).

bl el



22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

35

Cho, H., Kwon, J., Kim, K., Mun, M.: Optimum choice of the make-up ball sizes for maxi-
mum throughput in tumbling ball mills. Powder Technology 246, 625-634 (2013).
Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotech-
nique 29(1), 47-65 (1979).

Tsuji, Y., Kawaguchi, T., Tanaka, T.: Discrete particle simulation of two-dimensional flu-
idized bed. Powder Technology 77(1), 79—87 (1993).

Deen, N.G., van Sint Annaland, M., van der Hoef, M.A., Kuipers, J.A.M.: Review of dis-
crete particle modeling in fluidized beds using the CFDEM method. Chemical Engineering
Science 62(1-2), 28-44 (2007).

Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate
systems: a review of major applications and findings. Chemical Engineering Science 63(23),
5728-5770 (2008).

Cleary, P.W.: Recent advances in DEM modelling of tumbling mills. Minerals Engineering
14(10), 1295-1319 (2001).

Sinnott, M.D., Cleary, P.W., Morrison, R.D. (2006). "Analysis of stirred mill performance
using DEM simulation: Part 1—Media motion, energy consumption and collisional envi-
ronment." Minerals Engineering, 19(15), 1537-1550.

Sinnott, M.D., Cleary, P.W., Morrison, R.D. (2006). "Analysis of stirred mill performance
using DEM simulation: Part 2—Coherent flow structures, liner stress and wear, mixing and
transport." Minerals Engineering, 19(15), 1551-1572.

Weerasekara, N.S., Powell, M.S., Cole, S., LaRoche, R.D., Favier, J. (2013). "The contribu-
tion of DEM to the science of comminution." Powder Technology, 248, 3-24.

Powell, M., Smit, 1., Radziszewski, P., Cleary, P., Rattray, B., Eriksson, K-G., and Schaeffer,
L. (2006). "Selection and design of mill liners." In Advances in Comminution, S. Komar
Kawatra, ed., SME, pp. 331-376.

Suzzi, D., Radl, S., Khinast, J.G. (2010). "Local analysis of the tablet coating process: Im-
pact of operation conditions on film quality." Chemical Engineering Science, 65(21), 5699-
5715.

Radeke, C., et al.: Coarse grid CFD-DEM simulation of fluidized beds. Chemical Engineer-
ing Science 63(21), 5547-5561 (2008).

Mori, Y., et al. (2024). "Validation study on a coarse-grained DEM-CFD simulation in a
bead mill." Powder Technology, 413, Article 118058.

Radl, S., Radeke, C., & Khinast, J.G. (2011). "Parcel-Based Approach for the Simulation of
Gas-Particle Flows." 8th International Conference on CFD in Oil & Gas, Metallurgical and
Process Industries, Trondheim.

Herbst, J.A., & Lichter, J.K. (2006). "Use of multiphysics models for the optimization of
comminution operations." In Advances in Comminution, S. Komar Kawatra, ed., SME, pp.
459-478.

Sinnott, M.D., Cleary, P.W., Morrison, R.D. (2011). "Slurry flow in a tower mill." Minerals
Engineering, 24(3-4), 454-463.

Mayank, K., Malahe, M., Govender, 1., Mangadoddy, N., 2015, Coupled DEM-CFD Model
to Predict the Tumbling Mill Dynamics, Procedia [IUTAM, 15, 139-149.

Cleary, P.W., Owen, P.: "Effect of particle shape on structure of the charge and nature of
energy utilisation in a SAG mill." Minerals Engineering 132, 48-68 (2019).

Larsson, S., et al.: A novel DEM/CFD model for stirred media mills predicting power, media
and slurry dynamics. Minerals 11(1), 55 (2021).

Fragniére, G., et al.: Grinding media motion and collisions in stirred media mills using CFD—
DEM. Minerals 11(2), 185 (2021).



36

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57.
58.
59.
60.

61.

Tanneru, Y.S., Finke, J.H., Schilde, C., Harshe, Y.M., Kwade, A.: Coupled CFD-DEM sim-
ulation of pin-type wet stirred media mills using immersed boundary approach and hydro-
dynamic lubrication force. Powder Technology 444, 120060 (2024).

Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear PDEs.
Journal of Computational Physics 378, 686707 (2019).

Han, J., Jentzen, A., E, W.: Solving high-dimensional partial differential equations using
deep learning. PNAS 115(34), 8505-8510 (2018).

Thuerey, N., Weilenow, K., Prantl, L., Hu, X.: Deep learning methods for Reynolds-aver-
aged Navier—Stokes simulations of airfoil flows. 4744 Journal 58(1), 25-36 (2020).

Meng, S., Lu, L., Liu, Z., Yao, J., Qin, T., Chen, H., Li, Z.: Machine learning accelerated
discrete element modeling of granular flows. Computer Methods in Applied Mechanics and
Engineering 369, 113208 (2020).

Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science
324(5923), 81-85 (2009).

Cranmer, M.: Interpretable Machine Learning for Science with PySR and SymbolicRegres-
sion.jl. arXiv:2305.01582 (2023).

Stephens, T.: gplearn: Genetic Programming in Python, with a scikit-learn inspired API.
GitHub repository. Available at: https://github.com/trevorstephens/gplearn

Tenachi, W., Ibata, R., Diakogiannis, F.I.: Deep symbolic regression for physics guided by
units constraints: toward the automated discovery of physical laws. The Astrophysical Jour-
nal 959(2), 99 (2023).

Hosseinhashemi, S., Zhang, Y., Thon, C., Schilde, C.: Process insights with physics-inspired
data-driven modeling- example of battery electrode processing. Journal of Energy Storage
73, 109046 (2023).

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
220(4598), 671-680 (1983).

Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient sim-
ulation algorithm. Journal of Optimization Theory and Applications 45(1), 41-51 (1985).
Markov, A.A.: Extension of the law of large numbers to dependent quantities. Bulletin of
the Physical-Mathematical Society at Kazan University, 2nd series, Volume 15, pp. 135-
156 (19006).

Harchol-Balter, M.: From Markov Chains to Simple Queues. In: Performance Model-ling
and Design of Computer Systems: Queueing Theory in Action, 127-128. Cam-bridge Uni-
versity Press (2013).

Liang, F., Liu, C., Carroll, R.J.: Advanced Markov Chain Monte Carlo Methods: Learning
from Past Samples. Wiley, Hoboken (2010).

Rudin, C.: Stop explaining black box ML models for high-stakes decisions. Nature Machine
Intelligence 1, 206-215 (2019).

Molnar, C.: Interpretable Machine Learning. Independently published (2022).

Lipton, Z.C.: The mythos of model interpretability. ACM Queue 16(3), 31-57 (2018).
Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable ML. arXiv preprint
arXiv:1702.08608 (2017).

Bangi, M.S.F., Kwon, J.S.: Deep hybrid modeling of chemical process: Application to hy-
draulic fracturing. Computers & Chemical Engineering 134, 106696 (2020).



