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Abstract. This study integrates Computational Fluid Dynamics–Discrete Element 
Method (CFD–DEM) simulations with symbolic regression to develop interpretable 
models for wet ball grinding. A Neural Network (NN) based extrapolation bridges the 
computational–experimental scale gap, enabling simulations at tractable particle sizes 
(755–2000 μm) to inform models for industrially relevant sizes (214–800 μm). Six sym-
bolic regression frameworks were rigorously benchmarked: mainstream methods PySR 
and gplearn; PhySO; the physics-informed framework SyBReN; classic Simulated An-
nealing (SA); and a novel Simulated Annealing–Markov-Chain (SA-MC) approach in-
troduced in this work and released as open-source software. The analysis successfully 
reconstructed key components of Kwade’s energy model directly from data without 
theoretical constraints. Using simulation-derived stress parameters, predictions of ex-
perimental specific energy achieved coefficients of determination R² > 0.9, demonstrat-
ing that physics-informed computational features can reliably forecast real grinding 
performance. SA-MC delivered robust performance across equation complexities while 
avoiding complete failures, relying only on experimentally accessible parameters. The 
discovered expressions reveal previously hidden grinding mechanics, providing trans-
parent and physically meaningful equations suitable for real-time process control and 
establishing foundations for future digital twin implementation in industrial comminu-
tion. 
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1 Introduction 

Comminution occupies a paradoxical position in process industries: indispensable for 
mineral liberation, pigment dispersion, pharmaceutical formulations, and high-perfor-
mance ceramics production, yet notoriously energy-intensive, often consuming the 
largest fraction of plant electricity. For over a century, researchers have sought predic-
tive models for optimization, scale-up, and control. 

 
The earliest attempts were classical energy laws formalizing the relationship be-

tween grinding energy and particle size reduction. Rittinger argued that energy required 
for comminution is proportional to surface area increase [1], while Kick countered that 
fracture energy should scale with volume reduction [2]. Bond introduced his "third the-
ory," interpolating between the two and remaining a cornerstone of industrial mill de-
sign [3]. Hukki later emphasized that no single theory is universally valid, proposing a 
"solomonic settlement" accounting for different particle size ranges [4]. Meloy at-
tempted to unify these perspectives through dimensional analysis in a physically con-
sistent framework [5]. These works shaped practice for decades and framed scientific 
debate around energy efficiency. 

 
By the mid-20th century, comminution science shifted to more mechanistic formu-

lations. Austin, Klimpel, and Luckie developed detailed ball milling treatments [6]. 
Herbst and Fuerstenau demonstrated control strategies rooted in breakage kinetics [7]. 
Napier-Munn's monograph brought together decades of plant experience [8], while 
King emphasized simulation as a design tool [9]. Population Balance Models (PBMs) 
became central, with Hinde et al. [10] demonstrating their use for predicting product 
distributions, and Austin and Bagga providing fundamental analyses [11]. PBMs of-
fered elegance and predictive rigor but remained difficult to calibrate, limiting day-to-
day plant application. 

 
A new perspective arose through Kwade's stress intensity/stress number model. 

Kwade [12] framed wet comminution in stirred mills using two key parameters: Stress 
Intensity (𝑆𝐼) [Pa] and Number of Stress Events (𝑆𝑁) [-]. Subsequent work by Kwade 
and Schwedes [13] examined material breakage characteristics, while later studies pro-
vided design guidelines for nanoparticle production [14], validated particle size distri-
bution predictions [15], investigated stirred media mills [16,17], analyzed energy effi-
ciency [18], and considered industrial scale-up [19]. This mechanistic-empirical frame-
work remains influential in laboratory and industrial practice. 

 
Despite these advances, semi-empirical model limitations persisted. They often re-

quired material-specific calibration and could not capture nonlinear interactions involv-
ing slurry rheology, particle-particle effects, or wear. Janković et al. [20] underscored 
cement grinding optimization challenges, Napier-Munn et al. [21] highlighted gaps in 
linking design to circuit performance, and Cho et al. [22] emphasized ball sizing opti-
mization importance. 
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The advent of DEM and CFD fundamentally expanded the comminution modeling 
toolbox. Cundall and Strack [23] introduced DEM for granular assemblies, extended 
by Tsuji et al. [24] to fluid-particle flows. Reviews by Deen et al. [25] and Zhu et al. 
[26] documented rapid spread. Cleary [27] pioneered DEM in grinding, followed by 
Sinnott, Cleary and Morrison [28,29], Weerasekara et al. [30], and Powell et al. [31]. 
Coupled CFD-DEM methods matured with Suzzi et al. [32], Radeke et al. [33], and 
Mori et al. [34], while comprehensive models emerged from Radl et al. [35] and Herbst 
et al. [36]. Recent applications include Sinnott et al. [37], Mayank et al. [38], Cleary 
and Owen [39], Larsson et al. [40], Fragnière et al. [41], and Tanneru et al. [42]. These 
high-fidelity simulations provided unprecedented detail but computational cost limited 
routine industrial deployment. 

 
To overcome this bottleneck, researchers increasingly turned to NN augmentation 

of simulation data. Raissi et al. [43] introduced Physics-Informed Neural Networks 
(PINNs), while Han et al. [44] demonstrated deep networks for high-dimensional PDEs. 
Thuerey et al. [45] applied deep learning to accelerate flow prediction, and Meng et al. 
[46] showed NNs can approximate DEM outcomes for granular flows. Such methods 
enable extrapolating simulation results into experimental parameter ranges, yielding 
hybrid datasets combining CFD-DEM accuracy with machine learning flexibility. 

 
The resulting gap is striking: plants collect extensive data—power draw, torque, 

slurry density, particle size distributions—yet converting these into actionable predic-
tive models remains difficult. Black-box machine learning has been trialed, but its lack 
of transparency makes adoption unlikely in safety-critical and regulated industries. In-
terpretability is essential: engineers need not just predictions but understanding of why 
variables matter. 

 
Here, Symbolic Regression (SR) presents a compelling solution. SR searches math-

ematical expression space to find formulas fitting data while remaining interpretable. 
Schmidt and Lipson's seminal work [47] demonstrated SR could rediscover physical 
laws directly from experimental data. Modern frameworks balance computational per-
formance and interpretability differently: PySR provides evolutionary search with gra-
dient refinement [48]; gplearn implements genetic programming in Python [49]; PhySO 
integrates physics-inspired priors and dimensional constraints [50]; SyBReN applies 
physics-inspired modeling in industrial contexts [51]. 

 
In parallel, stochastic optimization strategies contributed to SR evolution. SA, intro-

duced by Kirkpatrick et al. [52] and independently by Černý [53], uses thermodynamic 
analogies to escape local minima. Its theoretical grounding lies in Markov Chains 
(MC), developed by Markov [54] and extended by Harchol-Balter [55]. Liang et al. 
[56] combined genetic programming with Markov Chain Monte Carlo (MCMC) for 
symbolic regression, framing equation discovery as stochastic sampling guided by 
Bayesian inference. Building on these ideas, we introduce SA-MC, a simulated anneal-
ing-Markov chain variant tailored to noisy, moderate-scale datasets typical of commi-
nution experiments. 
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Beyond algorithmic diversity, SR aligns with the push toward interpretable machine 

learning. Rudin [57] argues against deploying black-box models in high-stakes deci-
sions. Molnar [58] systematizes interpretability methods, while Lipton [59] critiques 
interpretability misconceptions, and Doshi-Velez and Kim [60] call for rigorous expla-
nation science. In process engineering, these principles are critical: operators must trust 
models influencing production. Bangi et al. [61] emphasize hybrid modeling, showing 
how mechanistic and data-driven approaches combine. SR naturally supports this par-
adigm by rediscovering mechanistic terms while remaining flexible to empirical data. 

 
The implications for comminution are significant. Transparent symbolic models en-

able optimization with respect to any key performance indicator while remaining inter-
pretable. They can act as soft sensors predicting target metrics in real time, reducing 
reliance on costly measurements and enabling control loop integration for automated 
monitoring, quality stabilization, and operational efficiency improvement. 

 
This paper presents precisely such a workflow. Laboratory grinding experiments and 

CFD-DEM simulations combine into a hybrid dataset, augmented by NN extrapola-
tions, covering torque, Particle Size Distributions (PSDs), slurry metrics, stirrer speeds, 
and bead sizes. This dataset benchmarks SR frameworks: PySR, gplearn, PhySO, 
SyBReN, and SA, against the newly developed SA-MC method. SA-MC balances ex-
ploration and parsimony, producing compact, physically meaningful models. Figure 1 
summarizes the complete pipeline, illustrating how experimental and computational 
data are integrated through symbolic regression frameworks to produce transparent 
equations for process optimization. 

 
Fig. 1. Workflow for developing interpretable comminution models: experimental and 
CFD–DEM data are combined, analyzed, and modeled with symbolic regression frame-
works (PySR, gplearn, PhySO, SyBReN, SA, SA-MC) to produce transparent equa-
tions for optimization and soft sensing. 
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Our contribution unfolds along four dimensions. First, we generate and process a 
comprehensive dataset combining laboratory grinding experiments with CFD-DEM 
simulations to capture parameters otherwise inaccessible experimentally. Second, we 
augment simulation data with neural-network extrapolation to bridge the gap between 
tractable computational bead sizes and experimentally feasible ranges, enabling hybrid 
datasets suitable for modeling. Third, we develop SA-MC, a novel SR method 
grounded in simulated annealing and Markov chain theory. Fourth, we benchmark SA-
MC against leading SR frameworks, establishing a reproducible evaluation framework 
for comminution modeling. Finally, in the Outlook, we outline how transparent, equa-
tion-based models could be deployed to improve grinding efficiency in industrial con-
texts. Collectively, these contributions advance interpretable, data-driven process opti-
mization and bridge the divide between mechanistic comminution models and black-
box machine learning. 

2 Methodology 

2.1 Experimental Setup and Data Acquisition 

To develop a robust dataset for accurately modeling key process parameters in wet 
stirred media milling systems, experimental data were obtained from the PML V-H 
laboratory bead mill. The PML V-H is a 1.2-liter, 3.3 KW stirred media mill manufac-
tured by Draiswerke (now Bühler Group) in 1991, representing a well-characterized 
laboratory-scale grinding system suitable for fundamental process investigation, 
providing precise control over grinding conditions while enabling comprehensive pro-
cess monitoring and data collection. 

 
Figure 2 demonstrates the mill configuration and the complex temporal evolution of 

three key process parameters during grinding operations. The mill features a horizontal 
Wet Stirred Media Mill design with sophisticated monitoring capabilities that enable 
real-time tracking of the Suspension Conductivity (𝜎) [µS/cm] and Torque on the Shaft 
(𝑀!) [Nm] throughout the grinding process. The Median Particle Size (𝑥!") [μm], was 
determined by periodically withdrawing samples at defined time intervals, which were 
subsequently analyzed offline to quantify the median particle size evolution. 
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Fig. 2. PML V-H mill configuration showing rotor assembly with grinding discs (left) 
and temporal evolution of 𝑥!" , 𝜎 , and 𝑀! during 5-hour grinding operation (right) 

 
The experimental campaign focused on aluminum oxide processing using steel grind-
ing beads with diameters ranging from 214 to 800 µm, representing the fine grinding 
regime typical of industrial applications. This size range encompasses both the transi-
tion from impact-dominated to attrition-dominated breakage mechanisms and provides 
sufficient variation for comprehensive model development. The selection of steel grind-
ing media ensured consistent material properties characterized by high density (7850 
kg/m³) and mechanical strength, avoiding potential contamination issues that might 
arise with ceramic alternatives. In total, the dataset comprised 20 experimental runs, 
covering the full range of grinding media sizes and operating conditions considered in 
this study. 
 

The experimental matrix encompassed Circumferential Speed (𝑣#) [m/s] varying 
systematically between 6 and 12 m/s, corresponding to different energy input levels and 
stress intensities within the mill. These velocity ranges were selected to cover the op-
erational envelope typical of industrial wet grinding applications while maintaining suf-
ficient energy input for effective particle breakage. Solid content levels were systemat-
ically adjusted from 10% to 30% by volume to investigate the influence of suspension 
concentration on grinding efficiency and energy utilization. 

All experimental runs were conducted over approximately 5 hours to ensure sufficient 
process evolution and statistical significance of measurements. As demonstrated in Fig-
ure 2, the temporal evolution shows characteristic grinding behavior with initial rapid 
𝑥!" reduction from approximately 780 µm to below 100 µm, followed by gradual sta-
bilization. Simultaneously, 𝜎 increases systematically due to increased particle surface 
area and potential contamination, while 𝑀! initially decreases as particle breakage re-
duces grinding resistance, then stabilizes at steady-state conditions. 



7 

Process Parameter Measurement. During each experimental run, comprehensive 
process monitoring was implemented through discrete time interval measurements, 
with sampling frequencies optimized to capture both rapid transient phenomena and 
long-term process evolution. Key parameters included as mentioned previously the Par-
ticle Size Distribution (PSD) evolution, measured using laser diffraction techniques to 
track the progression of particle breakage throughout the grinding process. 𝑀! on the 
main shaft was continuously recorded using precision torque sensors, enabling real-
time monitoring of power consumption and stress conditions within the mill. In addi-
tion, a broad set of process parameters was systematically recorded to characterize the 
mechanical and operational state of the system. These included 𝑣#, Grinding Time 
(𝑡$) [s], particle size (𝑥%", 𝑥!", 𝑥&"), Specific Energy (𝐸') [J/kg], Stirrer Speed (𝑛) [rad/s], 
Porosity(𝜀) [-], Grinding Media Diameter (𝑑()) [μm], Grinding Media Density 
(ρ()) [kg/𝑚"] and Media Filling Rate (Φ()) [-]. 

 
To capture suspension behavior and material transport, further parameters included 

Grinding Media Mass (𝑚()) [kg], Product Mass (𝑚*) [kg], Volume Concentration 
(𝑐+) [-], Mass Concentration (𝑐') [-], and Volume Flow through the mill (𝑉) [	𝑚"/s]. 
The physicochemical state of the suspension was characterized was characterized by 
Temperature Difference between Mill Inlet and Outlet (∆𝑇) [°C], Zeta Potential 
(𝜁) [mV], pH Value (pH) [-], 𝜎 , and the Amount of Nitric Acid (𝐻𝑁𝑂3) [mol/L]. 

 
This holistic measurement framework ensured that the mechanical, operational, and 

physicochemical aspects of the grinding process were comprehensively captured, 
providing a detailed basis for analyzing its relationship to particle size reduction, pro-
cess efficiency, and suspension stability. 

 
Thermal monitoring encompassed inlet and outlet fluid temperatures to quantify heat 

generation and potential thermal effects on suspension properties. pH values were sys-
tematically tracked to monitor potential chemical interactions between the grinding me-
dia, aluminum oxide particles, and process fluid. Electrical conductivity measurements 
provided additional insights into suspension chemistry and potential contamination ef-
fects, as clearly demonstrated by the systematic conductivity increase shown in Figure 
1. 

 
The 𝐸# values were directly measured during experimental operations, providing 

precise quantification of energy input per unit mass of processed material and enabling 
direct comparison with the milling system’s developed CFD-DEM Method simulation-
based generated 𝐸# data. The 𝐸# represents the energy required to grind or process a 
material, normalized per unit mass, serving as a critical parameter for quantifying the 
efficiency of energy utilization during material processing. These measured Em values 
formed the primary validation targets for subsequent model development. 

Validation Framework and Benchmark Models. The experimental framework was 
designed to enable validation against the established stress-energy model proposed by 
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Kwade, which provides a fundamental framework for understanding grinding processes 
in stirred media mills. Kwade's model is grounded in stress-energy principles, elucidat-
ing the relationship between the Intensity, Frequency and Energy of stress events in a 
stirred media mill and their effect on particle comminution. The model incorporates 
both the 𝑆𝑁 and the 𝑆𝐸 as critical variables, with these parameters influenced by multi-
ple process variables including 𝑑(), ρ(), 𝑛, 𝑣#, 𝑡$ , 𝜀 and Φ(). 

 
The 𝑆𝐸 component of Kwade’s model incorporates a linear relationship with 𝑚() 

and a quadratic dependence on 𝑣t, scaled by an empirical factor that accounts for media 
properties. In parallel, the 𝑆𝑁 calculation integrates geometric and operational parame-
ters to quantify the frequency of particle–media interactions. Together, this theoretical 
framework enables precise prediction of the energy demands for material size reduc-
tion, with its main value lying in its scalability and precision for optimizing industrial 
grinding operations and improving energy efficiency. 
 
2.2 CFD-DEM Method Simulations 

Simulation Framework and Software Implementation. To complement experi-
mental observations and extract process parameters not accessible through experi-
mental measurements alone, two-way coupled CFD-DEM simulations were imple-
mented using Rocky DEM and Fluent CFD software packages from Ansys. This inte-
grated approach enabled detailed analysis of 𝑆𝐸 distributions, Shear Stress (𝜏) [Pa] 
fields, and dynamic particle interactions within the mill geometry at a level of detail 
impossible to achieve through experimental measurements alone. 
 

The comprehensive workflow for establishing and executing the coupled CFD-DEM 
simulations is illustrated in Figure 3, which demonstrates the systematic approach re-
quired for successful integration of the two computational domains. The workflow en-
compasses geometry preparation, mesh generation, boundary condition specification, 
and iterative coupling procedures that ensure accurate representation of the complex 
fluid-particle interactions occurring within the grinding environment. 



9 

 
Fig. 3. Comprehensive CFD-DEM simulation workflow showing the integration of 
Rocky DEM and Fluent CFD with CAD geometry preparation, mesh generation, and 
final simulation results including particle dynamics visualization 
 
The CFD-DEM methodology represents a sophisticated computational approach where 
fluid flow and particle dynamics are simultaneously solved with full coupling between 
phases. The CFD component employs finite volume discretization to solve the govern-
ing fluid flow equations, while the DEM component tracks individual particle trajecto-
ries and collision dynamics. The two-way coupling ensures that particles influence fluid 
flow through momentum exchange, while fluid forces affect particle motion, creating 
a comprehensive representation of the grinding environment. 

 
Geometry Modeling and Mesh Generation. The geometry modeling accurately rep-
resented the PML V-H mill configuration based on detailed engineering drawings, in-
cluding precise stirrer pin dimensions, spacing, and angular orientations. The rotor as-
sembly consisted of four grinding discs (70 mm diameter, 5 mm thickness) and one 
stirrer head (43 mm height), with 19 mm spacing between adjacent discs, creating a 
total rotor length of 159 mm within a shell of 179.5 mm length and 86.3 mm inner 
diameter. 

 
A critical preprocessing step involved creating the negative volume geometry, where 

the solid rotor components were subtracted from the total mill volume to generate the 
fluid domain required for CFD meshing. This negative volume creation was essential 
to avoid interface zone detection errors that would prevent proper simulation setup. A 
moving mesh approach was implemented to simulate stirrer rotation, with the model 
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volume divided into inner and outer cell zones using a sliding mesh interface technique 
to properly capture the complex flow patterns generated by the rotating stirrer. 

 
The mesh generation strategy employed a finite volume method with non-conformal 

interfaces between rotating and stationary domains. Mesh sizing was optimized to en-
sure individual particles did not exceed cell dimensions, with minimum mesh size set 
to 0.0022 m and maximum size to 0.011 m based on the grinding media size range. The 
k-epsilon turbulence model with standard wall functions was selected to capture the 
complex flow patterns generated by the high-speed rotating stirrer, with gravity set to -
9.81 m/s² in the vertical direction. 

 
Simulation Setup and Parameter Space. The simulation campaign was designed to 
replicate experimental conditions while extending the parameter space to address com-
putational limitations. Simulations explored tip velocities of 6, 9, and 12 m/s, corre-
sponding to angular velocities ranging from 171.43 to 342.86 rad/s. These velocities 
maintained consistency with experimental conditions while enabling investigation of 
velocity scaling effects on grinding performance. 
 

However, computational constraints necessitated the use of larger grinding media 
sizes ranging from 755 to 2000 µm compared to experimental values of 214 to 800 µm 
to maintain manageable particle numbers while preserving numerical accuracy. The 
computational particle count scaling followed established practices, where simulating 
grinding media sizes down to 214 µm would have resulted in particle numbers exceed-
ing 10⁵ under the specified filling conditions, rendering the simulations computation-
ally intractable on available hardware. ΦGM was maintained at 80% to ensure con-
sistent stress conditions and energy transfer efficiency across all simulations, represent-
ing typical industrial operation conditions where the grinding chamber volume is opti-
mally utilized while maintaining effective particle circulation. 

 
The Hertz-Mindlin contact model served as the foundation for particle-particle and 

particle-wall interactions, providing physically realistic representation of collision dy-
namics through elastic-plastic deformation theory. Material property selection was 
based on steel grinding media characteristics, with Young's modulus (𝐸) [GPa] set to 
200 GPa, Poisson's ratio to 0.3, density to 7850 kg/m³, and restitution coefficient to 0.5 
for both particle-particle and particle-wall interactions. Static friction coefficients were 
set to 0.5 for steel-on-steel contacts, while rolling resistance was configured at 0.1 to 
account for surface roughness effects and energy dissipation during rolling contacts. 
Adhesive forces were neglected based on the assumption of clean steel surfaces in aque-
ous suspension. 

 
Product particles were not explicitly simulated to reduce computational burden, 

based on the assumption that their kinetic energy was significantly lower than that of 
grinding media and their motion closely followed fluid flow patterns. This approxima-
tion was validated through order-of-magnitude analysis of relative particle velocities 
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and masses, confirming that product particle dynamics had minimal influence on grind-
ing media motion and stress distributions. 

 
Convergence Criteria and Data Extraction. Simulation convergence was monitored 
through multiple metrics, with energy dissipation serving as the primary indicator of 
steady-state achievement. Each simulation was executed for a maximum of 1 second 
simulation time, equivalent to 27.3-54.6 stirrer rotations depending on angular velocity. 
This duration proved sufficient to achieve steady-state conditions, typically reached 
within the first 0.1 seconds as evidenced by stabilization of energy dissipation rates and 
particle velocity distributions. 

 
The simulation validation and convergence behavior is comprehensively demon-

strated in Figure 4, which combines energy distribution analysis, velocity evolution, 
and fluid flow visualization to validate the CFD-DEM methodology. The energy den-
sity distributions show distinct differences between one-way and two-way coupling ap-
proaches, with two-way coupling exhibiting higher energy peaks and more efficient 
energy transfer. The velocity evolution plots demonstrate convergence to steady-state 
conditions for both coupling methods, while the fluid streamline visualization reveals 
the complex flow patterns generated by the rotating stirrer geometry. 

 
Fig. 4. Comprehensive simulation validation showing (left) energy density distributions 
and cumulative distributions comparing one-way versus two-way coupling, (center) 
normal and tangential velocity evolution demonstrating convergence behavior, and 
(right) fluid streamlines and velocity field visualization illustrating complex flow pat-
terns within the mill geometry 
 
Parameters extracted from the simulations included 𝑆𝐸  distributions, 𝜏, net 𝑀! on the 
stirrer, and other dynamic interactions. 𝑆𝐸 distributions were estimated from collision 
kinematics. Statistical analysis provided characteristic distribution parameters includ-
ing 10th, 50th, and 90th percentiles (𝑆𝐸10, 𝑆𝐸50, 𝑆𝐸90) to characterize the full range 
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of stress conditions. Net 𝑀! measurements enabled direct comparison with experi-
mental data, while 𝜏 distributions provided insights into fluid-phase energy dissipation 
mechanisms. 

 
2.3 NN-Based Parameter Extrapolation 

Motivation and Framework Development. To address computational limitations that 
prevented direct simulation of experimental grinding media sizes, a Neural Network-
Genetic Reinforcement Learning (NN-GRL) framework was employed to align simu-
lation outputs with experimental grinding media sizes. This innovative approach ena-
bled accurate extrapolation of simulation results to match the experimental bead size 
range by leveraging data generated from simulations with larger beads. 

 
The NN-GRL framework was specifically designed to bridge the parameter gap be-
tween simulation capabilities (755-2000 µm) and experimental conditions (214-800 
µm), ensuring that the comprehensive insights gained from CFD-DEM simulations 
could be effectively utilized for analysis of experimental data. This hybrid approach 
ensured precise prediction of simulation parameters while maintaining consistency with 
experimental conditions. 
 
Network Architecture and Training Strategy. The NN architecture employed a feed-
forward design optimized for distribution prediction tasks, with input variables includ-
ing 𝑣# and 𝑑(), and output variables comprising key 𝑆𝐸 distribution characteristics, net 
𝑀#, 𝑆𝑁, and averaged 𝜏. Rather than predicting complete distribution functions, three 
characteristic parameters (𝑆𝐸10, 𝑆𝐸50, 𝑆𝐸90), representing the 10th,  50th, and 90th 
percentiles of the 𝑆𝐸 distribution were extracted to reduce computational complexity 
while preserving essential physical information about the grinding process. 

 
Figure 5 illustrates the complete NN methodology, showing both the complex parti-

cle dynamics the network must learn to predict and its architecture for handling the 
multi-dimensional parameter relationships. The spatial and temporal particle velocity 
patterns demonstrate the sophisticated physics underlying the grinding process, while 
the network training progression shows successful convergence to prediction accura-
cies suitable for engineering applications. 
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Fig. 5. NN methodology showing (left) network architecture with input parameters (𝑣#, 
𝑑()) and output parameters (𝑆𝐸10, 𝑆𝐸50, 𝑆𝐸90, 𝑀#, 𝑆𝑁, 𝜏), (right) training convergence 
curve demonstrating error reduction over iterations, and (bottom) spatial-temporal par-
ticle velocity patterns illustrating the complex dynamics the network must learn to pre-
dict 
 
Data preprocessing included comprehensive normalization procedures where input var-
iables were scaled by their respective orders of magnitude from the baseline simulation 
(𝑣# = 6 m/s, 𝑑() = 755 µm) to reduce the span of variable magnitudes from 20 to 3 
orders, significantly improving numerical stability and training efficiency. The training 
database encompassed 𝑆𝐸 ranges from 10⁻¹⁰ to 10⁻⁴ J, net 𝑀! values from 0.87 to 7.00 
Nm, and 𝜏 measurements from 13 to 258 Pa after appropriate scaling normalization. 
 

The NN-GRL algorithm combined Reinforcement Learning (RL) with Genetic Al-
gorithm (GA) optimization, executing iterative cycles to minimize prediction errors. 
Training was conducted over 30 iterations with systematic monitoring of training and 
validation errors to ensure optimal convergence. The training process demonstrated 
characteristic rapid initial improvement followed by gradual refinement, with mean rel-
ative error stabilizing at approximately 0.2% after convergence. This error level was 
deemed acceptable for engineering applications and below typical experimental uncer-
tainties. 
 
Extrapolation Performance and Validation. Following training completion, infer-
ence was performed to generate results for all required 𝑣#-𝑑() combinations within the 
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experimental parameter space. The extrapolation procedure successfully generated pre-
dictions for grinding media sizes down to 214 µm, effectively bridging the gap between 
computational and experimental capabilities. 
 

Model validation employed multiple approaches to ensure prediction accuracy 
across the full parameter space. Cross-validation procedures demonstrated consistent 
prediction accuracy across all simulation conditions, while sensitivity analysis con-
firmed physically realistic behavior and appropriate scaling relationships. The success-
ful extrapolation enabled seamless integration of CFD-DEM insights with experimental 
observations, providing a comprehensive dataset for subsequent analysis. 

2.4 Symbolic Regression Methods 

Problem Formulation and Theoretical Framework. The symbolic regression prob-
lem is formulated as discovering mathematical expressions f(x)	 that minimize predic-
tion error on experimental datasets D	 = {(x⁽ⁱ⁾, y⁽ⁱ⁾)}$!"# where x⁽ⁱ⁾ ∈ ℝᵈ represents in-
put features and y⁽ⁱ⁾ ∈ ℝ	 denotes target values. This constitutes a mixed discrete-con-
tinuous optimization problem requiring simultaneous optimization of expression struc-
ture  s ∈ S and numerical parameters θ ∈ Θ(s) ,	 where S represents the space of syn-
tactically valid mathematical expressions and Θ(s) denotes the parameter space for 
structure s. 

 
The optimization objective combines prediction accuracy with structural parsimony 

through the energy function: 
 

𝐸(𝑠, 𝜃) 	= 	𝐿(𝑓%(𝑋; 	𝜃), 𝑦) · (1	 + 	𝜆|𝑠|)      (1) 
 
where  L(·,·) represents the loss function, |s| denotes expression complexity meas-

ured as node count, and λ = 0.002 controls complexity penalization. Mathematical ex-
pressions are encoded as abstract syntax trees where internal nodes represent mathe-
matical operators and leaf nodes contain either input variables or numerical constants. 

SA-MC Framework. The SA-MC framework combines simulated annealing for 
global optimization with Markovian state transitions. While employing SA temperature 
scheduling, the approach satisfies Markov properties through memoryless state transi-
tions where the next state depends only on the current state and move operators. The 
methodology employs an MCMC approach where each state represents a unique math-
ematical expression encoded as a syntax tree. 
 
Transition Probability Design and Move Operators. The transition mechanism imple-
ments probabilistic distributions over structural modifications using two strategies. 
Strategy 1 employs a two-stage selection process that first randomly selects from five 
weighted options [0.81, 0.61, 0.41, 0.19, 0] with probabilities [0.35, 0.3, 0.2, 0.1, 0.05], 
where only the two lowest values (occurring 15% of the time) trigger size-preserving 
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moves. Otherwise, the algorithm modifies tree size, with a 35% probability of expan-
sion and 65% probability of reduction. Strategy 2 favors unary insertion (40%) over 
other move types (20% each), with one option disabled. 

 
The framework employs five core operators: equal-arity replacement substitutes op-

erations while preserving tree structure; unary and binary insertion expand complexity 
by introducing single-argument functions (sine, logarithm, square root) or two-argu-
ment operations (addition, multiplication, division) above existing nodes; unary re-
moval and subtree pruning reduce complexity by eliminating functions or replacing 
operations with selected operands, preferentially retaining larger subtrees. 

 
Variable selection within operators uses adaptive probability weighting where un-

used input variables receive double weight (2p) compared to utilized variables (p), en-
couraging comprehensive feature exploration while maintaining access to successful 
variable combinations. The move selection strategy follows configurable probability 
distributions designed to balance exploration with parsimony principles, as illustrated 
in Figure 6. 

 
Fig. 6. Energy landscape visualization showing probabilistic state transitions between 
expression structures 𝑆& through 𝑆' , with transition probabilities 𝑃' through 𝑃# illus-
trating the Metropolis acceptance mechanism and temperature-dependent exploration 
behavior 
 
SA Integration and Temperature Control. The MCMC exploration integrates with 
SA through temperature-controlled acceptance probabilities. Given current state 𝑠! with 
energy E(𝑠!), candidate state s′ is accepted with probability: 
 
𝑃(𝑎𝑐𝑐𝑒𝑝𝑡) 	= 	𝑚𝑖𝑛(1, 𝑒𝑥𝑝(()*

+$
))       (2) 

 
where ΔE	 = 	E(s′) 	− 	E(𝑠!) and 𝑇! denotes temperature at iteration 𝑡. Initial tempera-
ture Tₘₐₓ is determined through adaptive calibration executing 4,000 trial moves while 
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iteratively adjusting temperature by factors of 1.5 or 2/3 until achieving target ac-
ceptance rate of 0.6. Linear cooling follows 𝑇! =	𝑇#,- −	(𝑇#,- 	−	𝑇#.&) 	 · 	

!
/012/

. 
 
Constant Optimization Strategy. Following structural modifications, the framework 
optionally applies MCMC-based refinement to numerical constants. This secondary 
optimization employs bounded random walk transitions where the next parameter value 
is generated as 𝑘.34 =	𝑘. + ε. · δ, with direction ε. ∈ {−1,+1} randomly selected and 
step size δ adaptively controlled through exponential decay with factor 0.6 following 
unsuccessful moves. The complete algorithmic workflow is shown in Figure 7. 

 
 
Fig. 7. Complete algorithmic workflow showing the integration of structural MCMC 
exploration with constant optimization, including initialization procedures, move oper-
ator selection, Metropolis acceptance decisions, temperature scheduling, and conver-
gence monitoring mechanisms 

 
Implementation Framework. The framework implements comprehensive protection 
mechanisms ensuring robust evaluation across diverse input domains. Protected divi-
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sion returns unity when denominator magnitude falls below threshold ε = 0.01, pre-
venting singularities while maintaining mathematical interpretability. Protected loga-
rithm operations handle negative arguments through absolute value transformation, re-
turning zero for arguments below 0.001 to avoid numerical instabilities. Protected 
square root applies absolute value preprocessing, while protected exponentiation 
bounds exponents to [-4, 4] and operates on absolute bases. 

 
Expression evaluation employs recursive tree traversal with vectorized NumPy op-

erations, achieving computational complexity O(|s| · N) where |s| represents expres-
sion size and N denotes dataset size. Overall algorithmic complexity scales as O(G ·
|s|,56 · N) where G represents generations, |s|,56 denotes average expression size (typ-
ically 10-20 nodes), and N indicates dataset size. Individual operation complexities 
contribute: expression evaluation O(|s| · N), move generation O(|s|), energy computa-
tion O(N), and constant optimization O(I · N) where I represents MCMC iterations 
(15). 

 
The energy function supports multiple loss functions through modular evaluation 

architecture. Mean Absolute Percentage Error (MAPE) provides scale-invariant assess-
ment particularly suitable for materials science applications, while the coefficient of 
determination (R²) measures explained variance proportion, offering intuitive model 
quality assessment. 

Benchmark Symbolic Regression Frameworks. To evaluate SA-MC performance, 
we benchmark against five established frameworks representing diverse algorithmic 
paradigms. PySR combines evolutionary algorithms with gradient-based optimization 
through multi-population genetic programming, leveraging Julia's SymbolicRegres-
sion.jl backend for efficiency while providing Python interface and advanced features 
such as simulated annealing, automatic complexity control, and dimensional analysis. 
GPLearn follows standard tree-based genetic programming principles with scikit-learn 
compatibility, offering simplicity and standardized fit/predict interfaces. PhySO intro-
duces physics-informed symbolic regression by embedding dimensional analysis and 
physical constraints directly into the search process, combining genetic programming 
for structural discovery with gradient-based parameter refinement. SyBReN applies 
physics-inspired, data-driven modeling in applied industrial contexts such as battery 
electrode processing. Together, these frameworks span evolutionary, physics-informed, 
and neural-network-driven approaches, enabling comprehensive evaluation across mul-
tiple methodological dimensions. 

3 Results and Discussion 

3.1 CFD-DEM Simulation and NN Extrapolation 

The comprehensive CFD-DEM simulation campaign generated a detailed database en-
compassing nine distinct operating conditions with systematic variation of tip velocity 
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and grinding media diameter. Eight of the nine planned simulations were successfully 
completed, with simulation 3 (12 m/s, 755 µm) experiencing convergence issues due 
to high computational complexity that prevented complete data extraction. The missing 
values from simulation 3 were subsequently filled through interpolation using the 
trained NN on the remaining dataset to ensure completeness of the simulation database. 
The complete simulation trends are illustrated in Figure 8, which summarizes the ex-
tracted parameters (𝑀!, 𝜏, 𝑆𝐸10, 𝑆𝐸50) across simulated 𝑑() and 𝑣#. 

 
Fig. 8. CFD-DEM simulation results for (top left) 𝑀! , (top right) 𝜏, (bottom left) 𝑆𝐸10, 
and (bottom right) 𝑆𝐸50 as a function of 𝑑(). All quantities increase monotonically 
with  𝑑() and 𝑣#, though data at  𝑣#=12 are limited to two 𝑑() sizes. 
 
The parameter sensitivity analysis reveals the complex relationships between operating 
conditions and grinding performance, as demonstrated in Figure 9. The multi-parameter 
investigation shows systematic scaling of particle velocities with rotational speed, ma-
terial properties, and grinding media diameter, providing quantitative validation of the 
physical relationships underlying the grinding process. 
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Fig. 9. Multi-parameter sensitivity analysis showing normal and tangential velocity re-
sponses to (left column) 𝑣#variations (6, 9, 12 m/s), (center column) 𝐸 variations (1, 50, 
200 GPa), and (right column) 𝑑()variations (1, 3, 5 mm), demonstrating the complex 
parameter relationships the NN must capture for accurate extrapolation 
 
𝑆𝐸 distributions exhibited characteristic behavior with distribution parameters showing 
systematic dependence on operating conditions. Higher 𝑣# resulted in broader distribu-
tions with increased mean 𝑆𝐸, consistent with enhanced grinding efficiency. The 𝑆𝐸10, 
𝑆𝐸50, and 𝑆𝐸90 values demonstrated clear scaling relationships with both 𝑣# and 𝑑(), 
providing quantitative validation of theoretical grinding models. 
 

Net 𝑀! measurements from simulations ranged from 0.87 to 7.00 Nm across the 
parameter space, with systematic increases corresponding to higher 𝑣#  and larger 𝑑(). 
These 𝑀! values provided essential validation data for comparison with experimental 
measurements and served as key inputs for energy efficiency calculations. The 𝑀! scal-
ing followed expected trends, with larger media requiring greater energy input due to 
increased collision frequencies and intensities. 

 
𝜏 measurements revealed significant variation across operating conditions, ranging 

from approximately 13 to 258 Pa after appropriate scaling. The systematic variation of 
𝜏  with operating parameters provided insights into fluid-phase energy dissipation 
mechanisms and their contribution to overall grinding efficiency. Higher 𝜏 correlated 
with increased 𝑣# and enhanced fluid turbulence in high-energy grinding conditions. 
 
NN Extrapolation Results. The trained NN successfully extrapolated simulation re-
sults to experimental grinding media sizes, generating comprehensive predictions for 
all experimental conditions. The extrapolation process produced a complete dataset 
covering the experimental parameter space, with 𝑑() ranging from 214 to 800 µm and 
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𝑣# spanning 6 to 12 m/s. Notably, the NN was trained exclusively on the eight complete 
CFD-DEM simulations, with the interpolated data from simulation 3 excluded from the 
training process to maintain data integrity. Figure 10 shows the NN-augmented results, 
which reproduce the CFD-DEM values at simulated bead sizes and extend predictions 
to the experimental range. Unlike the monotonic CFD curves, the augmented results 
reveal non-linear U-shaped behavior with distinct minima, consistent with the existence 
of efficiency optima. 

 
Fig. 10. NN–augmented results for (top left) 𝑀! , (top right) 𝜏, (bottom left) 𝑆𝐸 10, and 
(bottom right) 𝑆𝐸50. The NN reproduces CFD-DEM results at simulated 𝑑() 
(755,1200,2000) and extends predictions to experimental used 𝑑() (214,375,800). The 
augmented curves reveal non-linear U-shaped behavior with minima at intermediate 
𝑑(), highlighting the existence of an optimal grinding media diameter. 
 
Comparison between extrapolated and experimental results showed agreement for di-
rectly measurable quantities. The extrapolated 𝑀! values demonstrated physically rea-
sonable scaling with 𝑑() and 𝑣# , with predicted decreases in specific 𝑀! as media size 
increased. This scaling behavior reflected the transition from energy-intensive fine 
grinding to more efficient coarse grinding regimes. 

 
𝑆𝐸 distribution parameters exhibited expected trends, with smaller media sizes gen-

erally producing lower individual stress energies but higher stress frequencies. The 
𝑆𝐸50 values for experimental conditions ranged from approximately 2.3×10⁻⁸ to 
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6.0×10⁻⁸ J, representing typical stress energies for fine grinding applications. The sys-
tematic scaling of 𝑆𝐸 with 𝑑() provided quantitative validation of fundamental grind-
ing theory. 

 
Integrated Dataset Validation and Quality Assessment. The combined experimental 
and simulation datasets provided comprehensive coverage of the grinding parameter 
space, with experimental data capturing real-world process behavior and simulation 
data extending insights into stress distributions and flow field characteristics not acces-
sible through experimental measurements alone. The NN extrapolation successfully 
bridged the parameter gap between simulation and experimental conditions, enabling 
seamless integration of both data sources. 
 

Cross-validation between experimental and computational results demonstrated sat-
isfactory agreement for overlapping parameter ranges, confirming the reliability of both 
methodologies. The integration of experimental measurements with CFD-DEM simu-
lation data provided unprecedented insight into grinding physics, combining the accu-
racy of experimental observations with the detailed process understanding enabled by 
computational analysis. 
 

The NN extrapolation methodology proved highly effective in bridging computa-
tional and experimental scales, with prediction accuracies well within engineering tol-
erances. The comprehensive validation procedures ensured that the integrated dataset 
accurately represented grinding physics across the full parameter space, providing a 
robust foundation for subsequent symbolic regression analysis and physics-based 
model development. 

 
The resulting integrated dataset encompassed process configuration input parame-

ters, measured parameters and simulation-based calculated parameters. This compre-
hensive framework provided the necessary data richness to capture the complex physics 
governing wet ball grinding processes, and serves as the foundation for subsequent 
symbolic regression analysis aimed at deriving physics-based models for critical grind-
ing parameters. The comprehensive parameter coverage and high-fidelity data genera-
tion methodology ensure robust model discovery capabilities for advancing the funda-
mental understanding of wet ball grinding physics and particle size reduction mecha-
nisms. 

3.2 Symbolic Regression Methods Benchmark Performance Analysis 

The evaluation of symbolic regression frameworks reveals that optimal performance 
depends critically on problem characteristics rather than universal algorithmic superi-
ority. This investigation examines six frameworks—SA-MC, PySR, PhySO, SyBReN, 
gplearn, and SA—across benchmark equations and experimental grinding data to 
demonstrate that successful process optimization requires strategic method selection 
and ensemble approaches. 
 



22 

Benchmark Performance Analysis. The evaluation across ten benchmark equations 
reveals significant performance variations dependent on equation complexity and struc-
tural characteristics. The results demonstrate that optimal framework selection is inher-
ently problem-dependent and benefits from ensemble approaches rather than single-
method solutions. 
 

The complete benchmark suite in Table 1 and Table 2 ranges from simple propor-
tionalities to complex nested expressions, with equations numbered 1-10 from top to 
bottom in order of increasing complexity. For simple equations (Eq.1-Eq.3), all frame-
works achieved near-perfect performance with R² values exceeding 0.99, confirming 
baseline competence across methodologies. However, performance divergence be-
comes pronounced as complexity increases, with each framework exhibiting distinct 
strengths and limitations. The benchmark suite was constructed using synthetic da-
tasets, with approximately 200 data points generated per equation. 
 
Table 1. Benchmark equations with comparative SA and SA-MC performance results 
showing execution times and R² accuracy values across increasing mathematical com-
plexity from simple proportionalities to nested expressions with dimensionless groups 
 

Equations t_SA 
R,_S

A 

t_SA-

MC 

R,_SA-

MC 

Yₛ	 = 	0.5 · 	Ŷ- 1.6 1 17 1 

SI	 = 	2.5 · 	γ · 	η 18.5 1 14 0.99999 

N	 = 	
γ · 	 𝑡.	
4π  15.7 1 20 0.96 

kₓ	 = 	0.98	 + 	0.02 · (
𝑐/
𝑐0
),.,! 74.7 0.634 18 0.74 

V̇ₖ	 = 	
1
2 · 	π · 	𝑑23 · 	n · 	𝑑2 · 𝐼4 · 	z · 𝑧5 38.76 1 47.35 0.99999 

SE	 = 	V
1
3W · 	𝑥

6 · π, · ŋ̂ 25.7 1 50 0.92265 

x(t) = 	𝑥" +	(𝑥789	 − 𝑥") ·
𝑡

(t	 + 	tₖ) 33.5 0.918 35 0.99996 

SME	 = 		
(√3 · 	V · (I	 −	 I") · cos	φ)

ṁ  113.1 0.619 129.1 0.71 

d;/ =		
A, V1	 −	V	

̇ ∗
𝐴%
W

f1	 +	gA6 · n · γ=>?@V	̇ ∗
hi

".! 	 · j1	 −	
V	̇ ∗

𝐴%
k
A".!

 96.2 0.303 22.73 0.9245 

𝑡B 	= 		
18 · η · k · ln(r₁r₀)

(ρ;; −	𝜌C	) · d;, · ω²
 113.1 0.0006 30.47 0.00707 
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Table 2. Comprehensive comparative performance of six symbolic regression frame-
works (gplearn, SyBReN, PySR, PhySO) across ten benchmark equations, showing ex-
ecution times and R² accuracy values for systematic algorithmic capability assessment. 
This table reports the performance of the remaining methods, complementing the re-
sults presented in Table 1. 
 

t_gplearn 
R,_gplear

n 

t_SyBR

eN 

R,_Sy

BReN 

t_PyS

R 

R,_PyS

R 
t_phySO 

R,_phyS

O 

0.3 1 0.02 1 9.86 1 44 1 

0.85 0.99993 0.0561 1 10.07 1 46 1 

1.29 0.99997 5.89 1 9.93 1 30 1 

0.95 0.99069 36.7 0.982 10.23 0.99993 249 0.99026 

2.97 0.99862 75.8 1 10.06 1 158 1 

1.08 0.99211 0.064 1 10.91 1 55 1 

0.85 0.94669 160.2 0.955 9.82 1 453 0.63686 

0.87 0.87557 286.9 0.739 10 1 108 0.80592 

0.73 0.75964 345.97 0.952 10.06 0.98283 252 0.73137 

0.74 0.0745 330.7 0.71 32.72 0.99888 747 0.93313 

 
The evaluation demonstrates complementary strengths across frameworks for process 
model discovery from empirical data. PySR achieved exceptional performance, reach-
ing R² > 0.99 for seven equations through multi-population evolutionary optimization 
with Julia backend, making it optimal when maximum accuracy is prioritized. 
 

PhySO maintained physical consistency with R² > 0.90 for dimensionally structured 
equations, providing invaluable theoretical validity for well-understood systems. 
SyBReN displayed impressive computational efficiency with R² > 0.95 for the first six 
equations and rapid execution, ideal for real-time applications.  

 
SA-MC, as an algorithmic approach still in the early stages of development and cur-

rently lacking deep learning components (unlike PhySO and SyBReN), demonstrated 
consistent moderate performance across different complexity levels without exhibiting 
complete failures. Under certain testing conditions, it even outperformed gplearn, high-
lighting its potential for exploratory process modeling with experimentally accessible 
parameters. As shown in Table 1, the comparison also includes the classic SA algo-
rithm, providing a direct baseline. Notably, SA-MC delivered substantial improve-
ments over SA in challenging cases—for example, Eq. 9 improved from R² = 0.303 to 
R² = 0.9245, and Eq. 10 from R² = 0.0006 to R² = 0.00707. 
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gplearn, while showing accuracy degradation for complex expressions (R² < 0.70 for 
challenging equations), provides computational efficiency and scikit-learn integration 
advantages for rapid prototyping and educational applications. 

 
The benchmark results visualized in Figure 11 reveal distinct performance patterns 

informing framework selection strategies. Simple equations are solved almost instantly 
by all methods, while complex cases introduce significant variability, with some sys-
tems requiring orders of magnitude more computation. 

 
Fig. 11. Performance analysis across mathematical complexity levels showing execu-
tion time heatmap with color-coding and accuracy-efficiency scatter plot with perfor-
mance threshold reference lines 
 
SA-MC reliably appeared near the optimal region, reaching accuracy levels above R² 
> 0.95 for multiple equations while keeping computation times competitive. The 
method shows particular promise as a robust screening tool for initial model discovery 
before applying specialized methods for refinement. SA-MC's performance on bench-
mark equations illustrates current capabilities and development opportunities. For the 
kinetic size evolution equation x(t) (Eq.7), the method captured the overall functional 
form with some deviation in transition regions. The particle size correlation d;/ (Eq.9) 
presented greater challenges, with SA-MC recovering the general relationship structure 
but showing variability in fine-scale fitting as shown in Figure 12, reflecting areas for 
algorithmic refinement in handling complex nested expressions. 
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Fig. 12. SA-MC equation recovery for benchmark equations: Eq. 7 (x(t), left) and Eq. 
9 (d;/, right). 
 
Process Engineering Applications. Application to experimental grinding data reveals 
how framework selection impacts solution quality and practical utility. Each method 
discovered different mathematical relationships, reflecting distinct algorithmic ap-
proaches and optimization strategies. 
 
Table 3. 𝐸' prediction results showing discovered mathematical expressions with R² 
accuracy values and MAPE error metrics, demonstrating trade-offs between prediction 
accuracy and parameter accessibility for process control applications 
 

Method Equations R² MAPE 

PySR 𝐸' =		
0.86382 · 𝑡$ · [𝑡$ 	+	(𝑑() · 𝑛³	 +	𝑣#)³]	

𝑚D
 0.9943 0.2907 

SyBReN 
𝐸%

=
0.94 · 𝑡& · (4.25 · 10'( · 𝑑)*( − 	1.79 · 10+) + 2.2 · 10, · 𝑚-	

𝑚-
 

0.9809 0.7870 

PhySO 𝐸' =	−104694.23271 · 𝑑(), · 𝑛6 · (𝑐+ · 𝑡$ 	−	𝑡$) 0.9027 0.9050 

PySR 𝐸' = 		3999.0002 · f
𝑆𝑁 · 𝑑()6 · 𝑣#,	

𝑚D
i 0.9999 5·10⁻⁸ 

SyBReN 𝐸' = 1003.2136 · f
ρ() · 𝑆𝑁	 · 𝑑()

6 · 	𝑣#,	
𝑚D

i 0.9999 0.0009 

PhySO 𝐸' = 		93705.7462827001 · 𝑡$ · 𝑑(), · 𝑛6 −	𝑣#, 0.8915 0.8455 

SA-MC 𝐸# = 𝑣!7 	 · 𝑡8
5$
./0·23 		·	;4

56.89:	·	./0	·	2

 0.8808 26.228 

PySR 𝐸' =		
𝑛 · 𝑡$ · 𝑣#6 +	𝑡$,		

𝑚D 	+ 	𝑛
 0.9664 0.1505 

PhySO 𝐸' = 		0.13284 · 𝑛 · 𝑡$ · 	𝑣#, · (0.38737	 −	𝑐+) 0.9274 0.2867 

SyBReN 𝐸' = 0.000266 · 𝑆𝑁 · 𝑑(), · 𝑣#6 0.7527 0.2531 

 
The Em equation results reflect three distinct dataset configurations that reveal the 
frameworks' ability to reconstruct theoretical relationships from different parameter 
combinations. The first three equations were generated using datasets without 𝑆𝑁 and 
SE parameters, where Em values came from simulation. Remarkably, frameworks were 
able to discover relationships incorporating the underlying physics that 𝑆𝑁 and 𝑆𝐸 rep-
resent—stress-related parameters (like circumferential velocity, media diameter, and 
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rotational frequency) and energy-related quantities—even without explicit access to 
these derived variables. 

 
The following four equations used datasets including 𝑆𝑁 and 𝑆𝐸 as input parameters, 

with Em also from simulation. These results demonstrate how frameworks leverage 
pre-calculated theoretical quantities to achieve exceptional accuracy, with PySR and 
SyBReN reaching R² values of 0.99999. 

 
The final three equations represent the most practically relevant scenario: 𝑆𝑁 and 𝑆𝐸 

from simulations as inputs, but Em measured experimentally. This configuration tests 
the frameworks' ability to predict real measured quantities using simulation-derived 
theoretical parameters, achieving R² values ranging from 0.75 to 0.93. 

 
SA-MC discovered relationships using experimentally accessible parameters, 

achieving R² = 0.8808 with MAPE = 26.2289 for specific energy prediction. The frame-
work demonstrated ability to identify stress-energy relationships through experimental 
parameters, incorporating blocks containing 𝑚(), velocity-related terms, and geomet-
ric factors that align with stress number theory. 

 
Different frameworks discovered exponential, rational, and polynomial relation-

ships, suggesting multiple valid mathematical representations of the underlying physi-
cal process. High-accuracy solutions consistently required simulation-derived parame-
ters, while experimental-only approaches achieved moderate accuracy through com-
plex nonlinear combinations of controllable variables. 

 
Notably, several discovered expressions show remarkable correspondence with es-

tablished theoretical models. The Kwade energy model (3) [13] provides the theoretical 
foundation for specific energy in grinding: 
 

𝐸' = EF	⋅EB
'!

=	
"#$	('())

('("#$	⋅	('()))	⋅	,-
	⋅	H.⋅/0123

H	⋅	9234 	⋅	I23	⋅	+/5

'!
      (3) 

 
In this Kwade energy model, the 𝑆𝑁 is represented by the fraction preceding the multi-
plication with the 𝑆𝐸; its leading block contains φ<= , ε, and 𝑐5, and is typically constant 
for a given process configuration. The 𝑆𝐸 is given by the second block, which includes 
𝑑() ,  ρ>?	, and 𝑣#. This separation illustrates how several of the tested symbolic re-
gression frameworks capture both the process-dependent frequency of 𝑆𝑁 and the en-
ergy transferred per event 𝑆𝐸. 
 

Most of SyBReN’s 𝐸# found models incorporate a block containing ρ>?	, 𝑆𝑁, 𝑑>?	
, 𝑣#, and that corresponds directly to key components of the Kwade theoretical frame-
work shown above. This structural alignment validates that the frameworks can recover 
physically meaningful relationships, even when not explicitly constrained by theoreti-
cal models.  
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Table 4. 𝑆𝑁 prediction results showing discovered mathematical expressions with R² 
accuracy values and MAPE error metrics for different symbolic regression frameworks 
 

 
The diversity of discovered expressions for stress number prediction illustrates the data-
dependent nature of symbolic regression outcomes. PySR achieved near-perfect accu-
racy (R² = 0.9943, MAPE = 0.2907) using accessible process parameters, demonstrat-
ing the method's ability to reconstruct the relationships underlying 𝑆𝑁 through combi-
nations of fundamental variables like 𝑑(), 𝑣#, and operational parameters.  
 

SyBReN generated comparable accuracy (R² = 0.9809) for stress number prediction, 
showing consistent performance while maintaining computational efficiency. The dis-
covered stress number expressions consistently featured parameter combinations in-
volving 𝑑(), 𝑣#, and rotational parameters, effectively reconstructing the theoretical 
basis of stress number calculations through empirical discovery. 

 
PhySO produced physically consistent expressions but with reduced accuracy (R² = 

0.9027), illustrating the trade-off between dimensional correctness and empirical fitting 
in complex systems. 

 
SA-MC discovered stress number relationships using experimentally accessible pa-

rameters, incorporating blocks containing media-related terms and velocity factors that 
align with stress number theory, though achieving moderate accuracy levels as expected 
for a developing framework. 
 
Table 5. Comprehensive 𝑥!" prediction results showing diverse mathematical expres-
sions with accuracy metrics, highlighting universal challenges in particle size evolution 
modeling and identification of physically meaningful scaling relationships 
 

Method Equations R² MAPE 

PySR 𝑆𝑁 =		
0.07628 · 𝑡$ · (𝑛	 + 	2.08341)			

(𝑑() 	+ 	0.00401)⁴
 0.9943 0.0446 

SyBReN 𝑆𝑁 = 194718740 · 𝑛 · 𝑡$ + 2.7	 ·
𝑡$ · 𝑛			
𝑑(),

 0.9809 0.1064 

SA-MC 𝑆𝑁 =	 𝑡$ · (11 · 𝑛)!.JK 0.9630 0.1680 

PhySO 
𝑆𝑁 =		 𝑡$ · 𝑛 · (271126041.89809	

− 	542252085.79618 · 𝑐+) 
0.9543 0.1641 

SyBReN 𝑆𝑁 =	
12.9	 · 𝑡$ · 𝑛			

𝑑(),
 0.7790 0.5021 

gplearn 𝑆𝑁 =		
𝑡$, · 𝑛	(𝑛 − 0.804)

𝑑()
 0.6204 0.7072 
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Method Equations R² MAPE 

PySR 𝑥!" =
55537.81899

(𝑀# − 	0.47214)(𝑡$ +	
V	

𝑀# − 	0.54823
)
 0.9403 0.3698 

PySR 𝑥!" =
	377.46445 · 𝑚()	

(𝐸' + 	16863.617)(−𝑆𝐸 · 𝑛	 +	𝑐+)	
− 	1.048178 0.9208 0.6506 

PhySO 𝑥!" = −𝑆𝐸	 + 	𝑇 −
826327.22129

−𝑀# · 𝑡$ · 𝑣# − 	590.37347
 0.9183 0.7215 

PySR 𝑥!" =
911.82623 · 𝑚*	

𝑀#
, · 𝑡$ + 	194.8095

 0.9027 0.5229 

PhySO 𝑥!" =	
77516.55773 · 𝑛

(𝑀# · 𝑣# · 𝑡$ + 	14.28966 · 𝑛 + 	𝑛) · ln(𝑛)
 0.8820 0.5540 

SyBReN 𝑥!" =	
100852.44
𝑀# · 𝑡$ + 	2𝑛

 0.8692 0.6309 

SyBReN 𝑥!" =	
66213.95
𝑀# · 𝑡$ + 	V

 0.8348 0.3785 

PhySO 𝑥!" =	V	𝑇 −
𝑐+ − 	224310815.84904

𝑀# · 𝑡$ · 𝑣t	
W
".!

 0.8274 1.5749 

SyBReN 𝑥!" =
3453.73 · 𝑚()

𝐸' +	𝑚() · (−𝑆𝐸 · (𝐸' 	− 𝑚D · 𝑡L) 	+ 	1.877)
 0.8198 0.4593 

 
Median particle size prediction presented the greatest challenge across all frameworks. 
Multiple particle size percentiles were evaluated (𝑥%", 𝑥!", 𝑥&"), with 𝑥!" delivering the 
best results across methods, though even these optimal results remained challenging. 
The best-performing methods struggled, with PySR reaching R² = 0.94 at best, indicat-
ing fundamental limitations of purely empirical approaches for complex multi-physics 
grinding processes. 
 
SA-MC achieved relatively low numerical accuracy but demonstrated capability in 
identifying the scaling relationship (4) This relationship captures essential physical de-
pendencies and relatively aligns with established grinding theory expectations. While 
quantitative performance requires development, SA-MC's ability to extract physically 
meaningful parameter combinations represents capability for process understanding: 

 
𝑥!" ∝ T ·𝑚𝐺𝑀 ·

𝑉
#0	·	8

        (4) 

 
Dimensional Consistency. Symbolic regression does not inherently enforce dimen-
sional consistency unless explicit constraints are applied. Several identified equations 
achieve excellent predictive accuracy but lack balanced units between equation sides. 
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Large numerical constants (e.g., 3999.0002, 93705.746) effectively absorb hidden unit 
conversions, resulting in strong empirical fits but limited physical interpretability. 

 
Examples include the fourth 𝐸' equation yielding near-perfect fits while relying on 

constants to compensate for dimensional mismatch, and the second 𝑥!" equation pre-
dicting trends accurately despite mixing incompatible dimensions. Conversely, the 
fifth, sixth, and eighth 𝐸' equations maintained full dimensional consistency with cor-
rect [m²/s²] units. 

 
While frameworks like SyBReN and PhySO enable dimensionality analysis and unit 

constraint enforcement, their application substantially reduced predictive performance, 
likely due to the small dataset, modeling difficulty for 𝐸', 𝑆𝑁, and 𝑥!", and wet ball 
grinding's multiphysics complexity. 
 
Framework Selection and Optimization Strategy. In Figure 13 the correlation anal-
ysis revealed complex interdependencies between process parameters and grinding per-
formance metrics. Strong negative correlations emerged between circumferential ve-
locity and median particle size, confirming expected energy input relationships. 

 
Fig. 13. Correlation matrix and feature importance analysis showing Pearson correla-
tion coefficients between grinding performance metrics (𝐸', 𝑆𝑁	, 𝑥!") and operational 
variables including circumferential velocity, media properties, and process conditions 
 
Feature importance analysis identified circumferential velocity as the dominant factor 
across metrics, with media diameter showing secondary importance for stress-related 
parameters. These patterns validate physical relationships captured in symbolic regres-
sion expressions despite numerical accuracy limitations. 
 

The comprehensive evaluation demonstrates that optimal performance requires stra-
tegic framework selection based on problem characteristics. When maximum accuracy 
is paramount with simulation-derived parameters available, PySR provides superior 
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performance with computational costs justified by exceptional quality. For dimensional 
consistency and physical interpretability, PhySO offers optimal accuracy-theoretical 
soundness balance. When rapid execution is critical, SyBReN provides competitive ac-
curacy with efficient inference. When experimental parameters are prioritized, SA-MC 
demonstrates consistent performance avoiding complete failure while providing inter-
pretable results. 

 
Optimal symbolic regression performance requires ensemble strategies rather than 

single-method approaches. Each framework excels in different scenarios—PySR for 
accuracy, PhySO for physics consistency, SyBReN for efficiency, SA-MC for robust-
ness. Combining strengths addresses individual limitations. 

 
Running multiple frameworks provides confidence assessment and reveals alterna-

tive mathematical representations. Hybrid approaches can utilize high-accuracy simu-
lation-based expressions for design optimization while maintaining interpretable exper-
imental-parameter relationships for process control. 

 
Framework selection impacts both model accuracy and practical implementation 

feasibility. High-accuracy expressions require simulation support, creating computa-
tional bottlenecks in real-time optimization. Experimental-parameter expressions ena-
ble direct process control with reduced precision. Successful optimization balances ac-
curacy with implementation constraints, often favoring moderately accurate, directly 
implementable relationships over highly accurate but computationally demanding al-
ternatives. 

 
These findings highlight a central trade-off: unconstrained symbolic regression ef-

fectively generates accurate empirical surrogates at the cost of physical interpretability, 
while dimensionally constrained approaches preserve validity but may underperform 
in data-limited, process-complex scenarios. Future work could address this through di-
mensionless π-groups (Buckingham's π-theorem) or refined constraint strategies bal-
ancing accuracy with interpretability. 
 
Correlation Analysis versus Symbolic Regression. The correlation analysis reveals 
important disconnects: not all parameters in discovered equations score highly in cor-
relation analysis. This commonly occurs when comparing symbolic regression with 
correlation or feature importance scores, reflecting fundamental approach differences. 

 
Correlation analysis captures linear pairwise relationships, while symbolic regres-

sion discovers nonlinear multivariate interactions. Variables may show weak individual 
correlation but become critical when combined through multiplication, division, or ex-
ponential operations. For 𝐸' equations, terms like 𝑣#, or 	𝑑()6  may not correlate strongly 
individually, but their interaction with 𝑆𝑁, ρ(), and 𝑚() creates predictive power. 

 
Feature importance metrics are typically normalized or model-specific, while sym-

bolic regression may exploit parameters with small raw influence but large structural 
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importance. The framework balances fit quality with simplicity, sometimes retaining 
variables appearing unimportant by correlation because they improve structural gener-
alizability through dimensional balancing or scaling effects. 

 
Multicollinearity complicates this relationship. Correlated inputs like 𝜎, 𝑃𝐻 , and 𝜁 

may have importance distributed across multiple correlation coefficients, while sym-
bolic regression selects specific combinations. This fundamental difference means cor-
relation identifies features tracking output linearly, while symbolic regression deter-
mines which feature combinations explain output through complex interactions. 

 
The results demonstrate that advancing symbolic regression for process engineering 

requires moving beyond single-method approaches toward integrated frameworks lev-
eraging complementary algorithmic strengths. Rather than seeking the "best" method, 
focus should shift to optimal combination strategies adapting to specific problem char-
acteristics and application requirements. This data-dependent optimization acknowl-
edges that symbolic regression success depends critically on alignment between algo-
rithmic capabilities and problem structure, suggesting future developments should em-
phasize ensemble methods and adaptive framework selection rather than universal al-
gorithmic improvements. 

 
Model Generalizability and Limitations. The generated Em, 𝑆𝑁, and	𝑥!"models 
achieve high accuracy on the experimental dataset but do not guarantee generalizability 
to other milling systems, materials, or configurations. The absence of 𝑑() from discov-
ered x₅₀ equations, despite extensive literature demonstrating its critical role in particle 
size evolution, exemplifies this limitation. While equations describe the current dataset 
effectively and could enable process automation in identical industrial settings, they 
would likely deliver inaccurate results for different systems. 

 
However, models contain generalizable components aligning with established the-

ory. 𝑆𝑁 equations feature tn and 𝑑() blocks, while the SyBReN 𝐸' equation incorpo-
rates blocks with ρ(), 𝑆𝑁, 𝑑(), 𝑣#, and 𝑚* corresponding directly to the Kwade energy 
model, validating physical relevance beyond specific experimental conditions. 

4 Conclusion and Outllok 

This study demonstrates the successful integration of experimental grinding data with 
CFD-DEM simulations through NN extrapolation and symbolic regression frame-
works, establishing a comprehensive methodology for discovering interpretable math-
ematical models in wet ball grinding processes. The hybrid approach combining labor-
atory experiments with computational simulations enabled extraction of process param-
eters previously inaccessible through experimental measurements alone, particularly 
stress energy distributions and shear stress fields that govern particle breakage mecha-
nisms. 
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The systematic benchmarking of six symbolic regression frameworks revealed that 
optimal model discovery requires strategic method selection based on specific applica-
tion requirements rather than universal algorithmic superiority. PySR demonstrated ex-
ceptional accuracy when simulation-derived parameters were available, achieving R² 
values exceeding 0.999 for energy models incorporating stress number and stress en-
ergy terms. PhySO maintained dimensional consistency crucial for theoretical validity, 
while SyBReN provided computational efficiency essential for real-time applications. 
The in this work developed SA-MC framework, despite moderate numerical accuracy, 
successfully identified physically meaningful parameter relationships using experimen-
tally accessible variables, demonstrating potential for industrial deployment where sim-
ulation support remains impractical. 

 
Discovered mathematical expressions exhibited remarkable alignment with estab-

lished theoretical frameworks, particularly the Kwade energy model. Multiple frame-
works independently recovered parameter blocks containing ρ(), 𝑆𝑁, 𝑑(), 𝑣#, and 𝑚* 
that correspond directly to theoretical stress-energy relationships, validating that data-
driven approaches can reconstruct fundamental physics without explicit theoretical 
constraints. However, the absence of 𝑑() from particle size evolution models and di-
mensional inconsistencies in some high-accuracy expressions highlight the inherent 
tension between empirical accuracy and physical interpretability. 

 
The primary limitation concerns model generalizability beyond the specific experi-

mental configuration. While discovered expressions achieve high accuracy on training 
data and contain theoretically meaningful components, their applicability to different 
mill geometries, materials, or operating conditions remains unvalidated. The small da-
taset size and focus on aluminum oxide processing restricts the scope of conclusions. 
Additionally, particle size prediction proved challenging across all frameworks, with 
best-performing methods achieving R² values below 0.95, indicating fundamental lim-
itations in purely empirical approaches for complex multiphysics processes. 

 
Looking forward, this research establishes the foundation for advanced process moni-
toring and control systems in industrial grinding operations. Future development will 
focus on integrating discovered particle size evolution models into a Digital Twin 
framework with real-time mill communication capabilities. As illustrated in Figure 14, 
this system enables dynamic forecasting of grinding progression, predicting time-to-
target particle size through continuous model updating based on live sensor data. The 
Digital Twin architecture incorporates torque measurements, conductivity monitoring, 
and periodic particle size verification to refine predictions throughout operation, trans-
forming static empirical models into adaptive process optimization tools. 
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Fig. 14. Digital Twin framework for real-time particle size evolution forecasting in wet 
ball grinding, showing integration of symbolic regression models with live mill sensor 
data, automated particle size analysis, and predictive control optimization for achieving 
target specifications. 
 

Future work will also address several critical areas to advance symbolic regression 
applications in process engineering. Expanding experimental datasets across diverse 
materials and mill configurations would enhance model generalizability and reveal uni-
versal scaling relationships. Incorporating dimensionless groups through Buckingham 
π-theorem could balance empirical accuracy with theoretical consistency. Development 
of ensemble methods combining multiple symbolic regression frameworks could lev-
erage complementary strengths while mitigating individual limitations. Integration with 
reinforcement learning algorithms would enable autonomous process optimization, ad-
justing operating parameters in real-time based on evolving model predictions. 

 
The transition from laboratory-scale model development to industrial implementa-

tion requires addressing computational efficiency, sensor reliability, and model uncer-
tainty quantification. Successful deployment demands robust frameworks handling 
noisy industrial data, partial sensor failures, and process disturbances while maintaining 
prediction accuracy. The Digital Twin concept represents a paradigm shift from reac-
tive process control to predictive optimization, potentially reducing energy consump-
tion, improving product quality, and minimizing operational costs across comminution 
operations. 

 
This work demonstrates that symbolic regression can bridge the gap between black-

box machine learning and mechanistic modeling in process engineering, providing in-
terpretable models that maintain physical relevance while achieving competitive pre-
dictive performance. The successful reconstruction of theoretical relationships from 
empirical data validates the approach's potential for discovering novel process under-
standing and enabling next-generation industrial automation systems. 
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Code Availability: The SA-MC symbolic regression framework developed in this 
study is available as open-source software at [https://github.com/ah-
medeisa2]. Benchmark equations and evaluation scripts are included in the reposi-
tory. 
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