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Abstract. Particle characterization remains challenging for complex samples with over-
lapping particles, agglomerates, and heterogeneous surfaces. This work integrates
transformer-based foundation models, the segment anything model (SAM) for segmen-
tation and dense prediction transformers for depth estimation to enable comprehensive,
domain-agnostic analysis of particle size, shape, and surface roughness. Validation on
aluminum oxide samples demonstrated clear superiority over conventional methods:
OpenCYV failed to segment overlaps, while Cellpose overestimated particle sizes by 25—
100%. Despite analyzing only ~0.1% of the population, the pipeline closely matched
QICPIC reference data (~950,000 particles) with Dg, deviations of 5.5-17%. A novel
interactive prompt guided segmentation system leveraging SAM’s capabilities enables
expert-guided segmentation of complex, multi-component samples. A novel depth-
based roughness characterization system for particle surface roughness estimation
achieved moderate correlation with profile methods (r = 0.64) despite scaling offsets.
Applied to solid-state battery materials, the method resolved submicron primary parti-
cles (Dgy = 0.54um) within agglomerates measured at 9.47um, a 17.5x% discrepancy
critical for electrode design. By leveraging foundation models, this work introduces an
accessible, generalizable pipeline that democratizes advanced particle characterization
through an interactive Python based implementation.

Keywords: Particle characterization, Particle Surface roughness, Foundation models,
Zero-shot learning, Depth Analysis, Interactive segmentation, Solid-state batteries
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1 Introduction

Particle characterization faces fundamental limitations when analyzing complex sam-
ples with overlapping particles, agglomerates, and heterogeneous surfaces. Traditional
measurement approaches including laser diffraction, sieve analysis, and optical micros-
copy provide quantitative assessment of particle size distributions and morphological
properties [1,2,3], yet encounter significant constraints when distinguishing primary
particles from agglomerates and analyzing samples with complex morphologies [4,5,6].

Computer vision approaches have emerged as alternatives, enabling direct morpho-
logical characterization from microscopy images [7,8]. Traditional image processing
methods employ classical algorithms including mathematical morphology [9,10],
threshold-based segmentation [11], and edge detection [12] to identify particle bound-
aries. Watershed segmentation [13] and morphological operations [14] have been
adopted for separating touching particles, yet these approaches struggle with complex
particle arrangements and varying imaging conditions.

Deep learning has transformed image analysis across multiple domains [15,16].
Convolutional neural networks, particularly U-Net architectures [17], have demon-
strated success in biomedical image segmentation. Instance segmentation methods such
as Mask R-CNN [18] enable simultaneous object detection and precise boundary de-
lineation. Specialized networks including U-Net variants [19] and nucleus segmenta-
tion algorithms [20] have been developed for microscopy applications. Cellpose repre-
sents an advancement as a generalist algorithm for cellular segmentation [21], trained
on diverse microscopy datasets to achieve performance across different cell types and
imaging modalities. Despite these advances, deep learning approaches for particle char-
acterization typically require substantial domain-specific training datasets and struggle
with generalization across different particle systems, imaging conditions, and prepara-
tion protocols [22,23]. Transfer learning techniques [24,25] can partially address these
limitations, but domain adaptation remains challenging for specialized applications.

Foundation models represent a paradigm shift in artificial intelligence, offering ca-
pabilities for zero-shot task performance across diverse domains [26]. Vision-language
models such as CLIP [27] demonstrate cross-modal understanding, while the segment
anything model (SAM) [28] has established benchmarks for zero-shot image segmen-
tation. Built on transformer architectures [29] and Vision Transformer (ViT) backbones
[30], these models leverage massive-scale pretraining to develop generalizable visual
understanding that transfers to specialized scientific applications.

Surface roughness characterization represents another critical dimension of particle
analysis, traditionally requiring specialized instrumentation such as atomic force mi-
croscopy (AFM) or stylus profilometry [31,32]. AFM provides nanometer-scale reso-
lution for surface topography measurements [33,34] but is limited to small sample areas



and requires complex sample preparation and expert operation [35,36]. Alternative ap-
proaches based on fractal analysis [37] offer mathematical frameworks for surface char-
acterization but lack direct physical interpretation.

Monocular depth estimation has emerged as a computer vision technique enabling
3D scene reconstruction from single images [38]. Self-supervised approaches [39] and
transformer-based architectures [40] have achieved accuracy in depth prediction tasks.
dense prediction transformers (DPT) [41] represent models for monocular depth esti-
mation, trained on diverse datasets [42] to develop understanding of geometric relation-
ships and photometric cues [43]. These models demonstrate zero-shot generalization
across different domains, making them potentially valuable for scientific imaging ap-
plications.

Recent advances in deep learning have extended to semantic segmentation applica-
tions [44,45], with fully convolutional networks and DeepLab architectures establish-
ing baselines for dense prediction tasks. Surface texture analysis benefits from stand-
ardized protocols including ISO 4287 and ISO 4288 [46,47] for roughness quantifica-
tion, while dynamic image analysis systems such as QICPIC [48,49] provide reference
standards for particle size and shape measurements according to ISO 13322-2 guide-
lines. Computer vision libraries including OpenCV [50] enable implementation of tra-
ditional image processing algorithms for comparative evaluation.

Solid-state batteries represent a critical application domain where precise particle
characterization is essential for performance optimization [51,52]. The microstructure
of composite cathodes, particularly the particle size distribution (PSD) of active mate-
rials and solid electrolytes, directly influences ionic conductivity, mechanical stability,
and electrochemical performance. Conventional characterization methods face chal-
lenges in this domain where laser diffraction measures agglomerates rather than pri-
mary particles, wet dispersion methods require inert solvents that may alter material
properties, and the air-sensitivity of many solid electrolytes precludes traditional sam-
ple preparation approaches.

Established standards for particle characterization include ISO 13322-1 for static
image analysis [53] and ISO 9276-6 for shape and morphology representation [54],
while statistical analysis follows protocols such as DIN 66141 for grain size distribution
representation [55]. These standardized approaches provide frameworks for quantita-
tive particle analysis but require adaptation for emerging measurement technologies
and complex particle systems. We address these fundamental limitations through novel
integration of transformer-based foundation models with specialized algorithms for ma-
terials analysis. Our comprehensive pipeline combines the SAM for zero-shot particle
segmentation with DPT for depth-aware surface roughness analysis, enabling advanced
characterization capabilities without domain-specific training requirements.

We demonstrate a comprehensive application of the SAM for multi-scale particle
analysis, achieving better performance compared to conventional computer vision and



specialized microscopy models like cellpose on complex samples. This transformer-
based segmentation system eliminates the need for domain-specific training while
maintaining high accuracy across diverse particle systems and imaging conditions. We
extend SAM’s interactive prompting using point clicks, bounding boxes, and mask
sketching to particle characterization, enabling interactive prompt guided segmentation
system (IPGSS) in complex multi-component samples.

We further introduce the first hemisphere-scale depth-based roughness characteriza-
tion system (DRCS) from standard Scanning Electron Microscope (SEM) images via
zero-shot depth estimation, capturing approximately half of each particle’s surface area
compared to the localized regions accessible by AFM, while eliminating the need for
specialized instrumentation. Extensive validation spans three domains: (1) size and
shape comparison against QICPIC reference measurements from ~950,000 particles,
(2) surface roughness validation against AFM validated profile-based method results
on nine core—shell microparticles, and (3) practical demonstration on solid-state battery
(SSB) materials resolving submicron primary particles within agglomerates.

A hierarchical filtering strategy combining transformer confidence scoring with mi-
croscopy-specific algorithms ensures measurement reliability and ISO compliance. Fi-
nally, we provide an open-source Python implementation with interactive segmentation
tools, enabling guided accurate particle characterization for microscopy datasets. The
pipeline architecture integrating these components is illustrated in Figure 1, showing a
simplified workflow from microscopy input through transformer-based analysis to
quantitative characterization outputs.

Pipeline

Data Input i User-Guided Morphological &
‘ & Denoising Selection Surface Analysis
Estimation

Validation:
1) QICPIC for particle size and shape
2) AFM for particle surface roughness

Fig. 1. Pipeline architecture for transformer-based particle characterization. The workflow in-
cludes preprocessing, segmentation with depth estimation, user-guided selection, and morpho-
logical and surface analysis for final property quantification. Validation is performed using
QICPIC for size and shape and AFM validated contour-based profile method data for surface
roughness.



2 Methodology

2.1  Sample Preparation and Experimental Setup

Size and Shape Validation Materials. For validation, aluminum oxide samples (Final
GmbH, Noxid Pulver-160, 99.8% purity, Ds, =~ 50um) were prepared under two con-
ditions to evaluate the segmentation system’s performance across preparation proto-
cols. In the dry condition (2-D), powder was gently spread on glass slides to form a
monolayer or near-monolayer, minimizing preferential orientation effects. Excess ma-
terial was removed by controlled tapping, yielding representative PSDs suitable for op-
tical microscopy. In the dispersed condition (2-Di), samples were ultrasonicated in wa-
ter for 5 minutes at room temperature using standardized power settings to ensure re-
producible dispersion without particle fracture. Suspensions were deposited by cali-
brated micropipette drop-casting. High-resolution optical images were acquired with a
WilTec alpha300 R microscope under standardized settings: consistent illumination,
fixed working distance, calibrated white balance, and per-field focus adjustment (Fig-
ure 2, left).

Reference distributions were obtained with a QICPIC dynamic image analysis sys-
tem (Sympatec, Germany) operated according to ISO 13322-2. Each condition involved
~950,000 particles, providing statistically robust ground truth. QICPIC employed high-
speed imaging with stroboscopic illumination to capture particles in motion under both
dispersed and dry measurement conditions, ensuring reliable detection across prepara-
tion modes (Figure 2, middle). Sample preparation protocols for both conditions are
illustrated in Figure 2, right. The dry measurement required a noticeably larger sample
volume than the dispersed condition to maintain stable material feed and consistent
particle flow through the QICPIC system. Each condition was measured multiple times
to ensure measurement stability and accuracy. While QICPIC provides large-popula-
tion reference measurements, it has practical limitations: it requires comparatively large
sample quantities, which is problematic when working with expensive or scarce mate-
rials, and sample handling becomes more difficult for toxic, reactive, or air-sensitive
powders that may interact unfavorably with the QICPIC dispersion environment. In
contrast, microscopy-based analysis combined with SAM requires only minute sample
amounts, avoids potentially reactive dispersion steps, and remains compatible with haz-
ardous or sensitive materials providing a more flexible and accessible characterization
option.
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Fig. 2. Experimental setup for particle size and shape validation. Optical microscopy (WITec
alpha300 R) and dynamic image analysis (QICPIC) were used in parallel, with samples prepared
under dry powder (2-Dr) and dispersed suspension (2-Di) conditions to evaluate consistency
across measurement modalities.

Surface Roughness Validation Dataset. For validation, nine particles were selected
from the open-source dataset of Hiilagii et al. [36]. The dataset contains high-resolution
SEM images together with AFM-validated, profile-based roughness measurements of
of PS/FesO4 and PS/Fes04/Si0: core—shells microparticles synthesized under controlled
conditions to yield systematic variations in surface roughness.

Validation was performed on nine particles selected to span a broad range of archi-
tectural complexity and surface morphology. Particles 1 and 2, corresponding to the
material type PS/FesOa, exhibit a core—shell structure with comparatively low surface
complexity. The remaining Particles 3—9 correspond to the material type PS/FesO4/SiO-
and were drawn from two synthesis batches: Batch 1 includes Particles 3, 4, 6, and 7,
while Batch 2 includes Particles 5, 8, and 9. Together, these samples capture a wide
range of surface complexities, with representative images shown in Figure 3 (top).

The dataset provides validated ground-truth measurements through two complemen-
tary methodologies operating at different spatial scales. The contour-based profile
method, which is used in this work in its AFM-validated form, extracts roughness from
2D particle-boundary fluctuations analyzed from multiple viewing angles, capturing
edge irregularities that correspond to surface features intersecting the particle silhouette
(Figure 3, bottom right). AFM measurements provide direct 3D topographical analysis
of highly localized surface regions representing only a fraction of the total particle sur-
face but offer nanometer-scale height resolution for detailed characterization (Figure 3,
bottom left).
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Fig. 3. Surface roughness validation framework based on the validation dataset. (top) Repre-
sentative SEM images of the validation particles (1-9) spanning nine roughness levels. (bottom
left) AFM scans visualization example on particle 5 providing 3D topography ground truth. (bot-
tom right) Contour-based profile analysis method visualization example, extracting boundary
fluctuations as a roughness measure.

2.2  Interactive Particle Segmentation Using SAM

Zero-Shot Segmentation System Implementation. SAM serves as the core segmen-
tation engine, implementing a ViT-H/16 vision transformer trained on the SA-1B da-
taset (>1 billion masks across 11 million images). This large-scale pretraining enables
robust zero-shot generalization to particle microscopy despite the domain shift from
natural to scientific imagery. The transformer architecture departs from traditional seg-
mentation by using self-attention to capture global context and long-range dependen-
cies, allowing accurate boundary detection in complex particle arrangements. Through
extensive pretraining, SAM develops generalizable visual concepts that transfer effec-
tively to microscopy without domain-specific datasets, maintaining high segmentation
accuracy. Although SAM does not implement formal probabilistic uncertainty quanti-
fication, it outputs multiple candidate masks for each prompt along with predicted IoU
confidence scores, which serve as a practical proxy for uncertainty. A built-in stability
score further evaluates mask robustness under threshold variations, enabling the rejec-
tion of low-confidence or ambiguous boundaries.

The image encoder processes inputs resized so that the longest side is 1024 px and
padded to a 1024 x 1024 tensor, producing dense feature maps that preserve both local
detail and global context. User prompts are converted to embeddings by the prompt
encoder, guiding the lightweight mask decoder to produce real-time outputs. The com-
plete workflow (Figure 4) begins with calibrated microscopy images, followed by seg-
mentation in either automatic batch mode or interactive prompting. Outputs are refined
using a four-stage hierarchical filtering cascade and subsequently quantified through



seven geometric and morphological parameters, with percentile-based distributions re-
ported in line with commercial standards.
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Fig. 4. Workflow for particle shape analysis integrating SAM-based segmentation with spatial
calibration, mask filtering, and morphological parameter calculation. The segmentation system
supports both automatic and manual segmentation modes, followed by shape and surface metric
extraction and statistical analysis to generate QICPIC-compatible outputs.

Dual-Mode Segmentation System. The developed system supports two complemen-
tary modes. Automatic mode exploits SAM’s zero-shot detection to autonomously gen-
erate particle masks across entire images using grid-based prompting. Candidate masks
are iteratively produced at grid points, with inherent confidence scoring automatically
discarding ambiguous regions.

Manual mode enables targeted particle selection through interactive prompts-posi-
tive/negative points, bounding boxes, and rough sketches that SAM refines into accu-
rate masks. This guided promptable segmentation capability is a novel contribution in
the field of particle characterization, providing user-controlled analysis. Point prompts
allow rapid single-click boundary inference; bounding boxes supply coarse localization
tolerant of imprecision; and sketch inputs support iterative refinement for complex
cases.



The interactive segmentation system is particularly valuable for selective identifica-
tion of specific particle populations, analysis of multi-component samples, and focused
study of morphological features. This extends the system’s utility from automated anal-
ysis to expert-guided workflows for specialized research and industrial applications.

The full workflow (Figure 5) includes SAM initialization and preprocessing, user
input via point, box, or sketch prompts, real-time predictions with confidence scoring,
and iterative refinement supported by history management and mask stack operations.

Start Manual User Interaction
Mode

SAM Initialization
Model loading
Predictor instance creation
e Setimage analysis

Draw Selection
Single click or drag
rectangle

Update Mask Stack SAM Prediction
Add to combined mask * Extract box CQO_I'dS
Store in history Convert to original

Update preview image scale
[EW * Select best score

Display Preview

* Coloured overlay
Show all selection
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Proceed to Analysis
* Apply size/shape pipeline
* Use manual masks
* Generate metrics

Fig. 5. IPGSS workflow for manual SAM mode. The workflow enables users to iteratively refine
image segmentation using bounding boxes and mask operations, with real-time feedback and
confidence scoring, before finalizing masks for downstream size/shape analysis.

The IPGSS maintains a history-tracked mask stack with full undo/redo functionality,
enabling iterative refinement during exploratory analysis. Each user interaction is pre-
cisely mapped from the display scale to the original image coordinates, with transfor-
mations accounting for zoom, centering, and pan offsets to ensure spatial accuracy
across all interaction modes.

The IPGSS exhibits a high degree of tolerance to imprecise input, consistently gen-
erating accurate segmentation masks even when user-drawn bounding boxes are coarse,
include background regions, or partially miss particle boundaries. This robustness
arises from SAM’s boundary-aware feature representations, developed through exten-
sive and diverse pretraining, which enable it to infer true particle extents from minimal
localization cues. As illustrated in Figure 6 top panel, even when a bounding box
closely borders adjacent particles, the IPGSS precisely segments only the intended tar-
get while excluding nearby particles at the boundary, demonstrating its strong capabil-
ity for spatial discrimination.

The cement particle example in Figure 6 bottom panel further illustrates the flexibil-
ity of the manual segmentation mode: under expert guidance, the user can either isolate
an entire particle in the tens-of-micrometers range or selectively segment nanoscale
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surface features as small as ~30 nm. This capability enables comprehensive multi-scale
particle characterization within a unified, interactive workflow.
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Fig. 6. Manual mode precision in segmentation. (top left) user-provided bounding boxes show
coarse localization with background inclusion. (top right) SAM-generated masks accurately iso-
late target particles, excluding adjacent ones. (bottom) example on cement particles illustrating
interactive segmentation, where the user can choose to segment the large particle as a whole or
selectively isolate smaller particles on its surface.

Hierarchical Multi-Level Filtering Strategy. The segmentation system’s architecture
in Figure 7 illustrates the hierarchical particle segmentation and filtering workflow. A
complex particle sample image is first encoded into image embeddings and processed
through SAM’s lightweight mask decoder, guided by a prompt encoder that accepts
positional (x,y) coordinates together with foreground (fg) and background (bg) point
prompts, or alternatively, bounding box coordinates (x,,y;) and (x,,y,). SAM’s in-
ternal confidence scoring initially filters out low-quality masks, after which configura-
ble microscopy-specific filters based on area, gradient magnitude, and circularity fur-
ther refine the candidate regions. This integration ensures robust and reliable particle
identification across diverse imaging conditions while maintaining analytical precision.

The architecture uses a four-stage filtering workflow, starting with SAM’s confi-
dence scores and extending with custom microscopy-oriented filters introduced in this
work. This layered approach ensures robust particle identification across diverse parti-
cle systems and imaging conditions while prioritizing analytical precision over detec-
tion completeness. The first stage leverages SAM’s transformer-based confidence scor-
ing, which includes stability scores, quality prediction algorithms, and attention-based



11

uncertainty estimation. Candidate masks with low confidence are automatically dis-
carded through configurable thresholds, removing ambiguous boundaries and poorly
defined objects at the source. The second stage applies area-based statistical filtering to
enforce expected size ranges, removing very small objects that likely represent noise or
debris and rejecting oversized agglomerates that may correspond to clusters or imaging
artifacts. A configurable minimum area threshold is applied, with a default range of 10—
1000 pixels, though this can be adjusted depending on particle size and image resolu-
tion.

The third stage applies element-based threshold filtering to enhance particle back-
ground separation. A configurable intensity threshold is used to exclude regions with
poor contrast or weak signal definition. The final stage imposes circularity-based mor-
phological filtering with user-configurable thresholds (default minimum circularity of
0.8) to eliminate highly irregular objects, which often arise from segmentation artifacts,
agglomerate fragments, or non-particle structures. This step retains both spherical and
irregular but valid particles, ensuring flexibility while removing obvious false positives.

Together, these four filtering layers form a conservative architecture that enhances
the reliability of particle segmentation for quantitative characterization. Independent
threshold adjustment at each stage allows the SS to be adapted to different imaging
conditions and particle systems.
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Fig. 7. Hierarchical filtering architecture for particle segmentation. SAM processes input images
using positional (x,y) and foreground (fg)/background (bg) prompts. Candidate masks are
screened by confidence scoring and refined by area, gradient, and circularity filters for robust
particle identification across imaging conditions. (right) two examples on the showing a common
issue in complex microscopy images: SAM may misinterpret object boundaries and split a single
particle into multiple masks. The added circularity-, area-, and gradient-based filters correct these
errors by guiding the system toward true particle regions and preventing such mis-segmentation.
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Evaluation Against Conventional Methods. To demonstrate the advantages of the
transformer-based approach, comparative analysis was performed on >20 complex alu-
minum oxide images using three segmentation strategies: the SAM-based segmentation
system, OpenCV edge-based segmentation, and Cellpose deep learning segmentation.

OpenCV represented traditional computer vision, combining gradient-based edge
detection with contour extraction to delineate particle boundaries. Cellpose represented
the state-of-the-art in microscopy segmentation, using a flow-based deep learning
model trained on microscopy images to predict gradient fields toward particle centers,
enabling segmentation of touching or overlapping objects.

The evaluation focused on challenging dispersed samples with high particle density
and overlap, representative of practical characterization scenarios in materials pro-
cessing and quality control. Performance was assessed through both qualitative visual
inspection and quantitative comparison of particle counts and size distributions against
QICPIC reference measurements.

2.3 Zero-Shot Depth-Aware Surface Roughness Analysis

DPT Architecture and Implementation. The depth estimation component uses DPT-
Large with a ViT-L/16 backbone, trained within the MiDaS framework on a diverse
mixture of datasets including NYU Depth V2 and KITTI. This heterogeneous training
enables the model to learn strong monocular depth cues such as shading gradients, tex-
ture variation, and global geometric structure that transfer effectively to microscopy
despite the substantial domain shift. The approach introduces a novel depth-based
methodology for particle roughness analysis, reconstructing the full SEM-visible sur-
face region of each particle from a single image. This offers markedly broader surface
coverage than AFM, which typically samples less than 5% of the particle’s area, while
avoiding the specialized instrumentation, intricate preparation steps, and calibration
procedures required for AFM measurements. The zero-shot capability further enhances
accessibility by eliminating the need for domain-specific training data.

DPT implements hierarchical feature extraction, processing images at multiple res-
olutions and fusing them through a feature pyramid network. This enables depth maps
at full resolution that preserve fine-scale textures while maintaining global geometric
consistency. Zero-shot performance arises from pretraining across diverse depth esti-
mation scenarios, learning cues from shading gradients, textures, specular highlights,
and perspective effects. These priors transfer directly to SEM images, where electron
scattering encodes surface topography. The full depth-aware roughness workflow (Fig-
ure 8) begins with SEM input, followed by zero-shot DPT depth estimation with multi-
scale processing. Depth maps are converted into 3D point clouds with real-world scal-
ing, filtered to remove substrates, and analyzed with ISO-standard roughness metrics,
producing five complementary measures of surface texture through electron scattering
and secondary electron emission patterns.
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Fig. 8. DRCS’s architecture: SEM images with segmentation masks are processed using DPT to
generate scaled 3D point clouds. Percentile-based filtering removes substrate artifacts, and ISO-
standard roughness parameters (Rgq, Ry, PV, Ssk, Sky,) are computed as quantitative surface de-

scriptors.

3D Point Cloud Generation and Real-World Scaling Protocols. Depth-to-3D con-
version uses inverse perspective projection with real-world scaling based on particle
dimensions from image metadata or user input. Pixel coordinates and relative depths
are transformed into 3D Cartesian coordinates with nanometer units. Table 1 summa-
rizes the coordinate transformation and scaling parameters.

Table 1. 3D Point Cloud Generation and Scaling Parameters

Parameter Description Typical Value
xy_scale Lateral spatial resolution (nm/pixel) 1.836 nm/pixel
z_scale Depth scaling factor (nm/depth unit) Derived  from  hemi-

spherical assumption

Physical width Particle diameter from image metadata | ~2000 nm (2 pum)
Image width Image resolution 2048 pixels
Expected height Half of particle diameter for spheres Physical width / 2
Percentile threshold | Z-value cutoff for substrate removal 40th percentile

The lateral resolution (xy_scale) is obtained by dividing the physical particle width de-
rived from SEM metadata or scale calibration by the image width in pixels, yielding
the nanometer-per-pixel factor used to scale the x—y coordinates of the reconstructed
point cloud. The depth scaling factor (z_scale) converts the model’s relative depth units
into physical height by assuming that each particle approximates a hemisphere, where
the expected height equals half of the measured particle diameter. This links the pre-
dicted depth range to the actual particle geometry, ensuring that reconstructed height
values are physically meaningful. The physical width parameter represents the parti-
cle’s real-world diameter, while the image width corresponds to the SEM resolution
(e.g., 2048 px) defining the sampling density across the field of view. The expected
height, calculated as physical width divided by two, provides the geometric reference



14

needed to align the depth map with the hemispherical assumption. Point cloud refine-
ment employs percentile-based Z-thresholding to separate the particle surface from the
substrate. A cutoff near the 40th percentile is typically applied, removing low-lying
depth values associated with the background and the particle-substrate interface. This
preserves the upper ~60% of the particle surface, where depth estimates are most reli-
able and contain the topographical features essential for roughness quantification.

ISO-Standard Surface Roughness Analysis. Surface roughness evaluation follows
ISO 4287/4288 standards, applying five complementary metrics to the filtered three-
dimensional point cloud obtained after substrate removal. Let N denote the total num-
ber of surface points in the point cloud, z; the height of point i (in nanometers), and
zZ= %Z?’:l z; the mean surface height. The corresponding parameters are summarized

in Table 2. The arithmetical mean deviation R, quantifies the average absolute devia-
tion of surface heights from the mean plane and represents the most widely reported
roughness descriptor. The root-mean-square roughness R, is more sensitive to large
deviations and typically exceeds R, by 10-25%. The peak-to-valley height PV ex-
presses the maximum height difference across the surface, capturing extreme topo-
graphical features. Skewness S, characterizes asymmetry in the height distribution,
with negative values indicating valley-dominated surfaces and positive values indicat-
ing peak-dominated surfaces. Kurtosis Sy, describes the tailedness of the distribution;
values greater than 3 correspond to spiky surfaces with pronounced peaks, whereas
values below 3 indicate flatter topographies.

Table 2. ISO-Standard Surface Roughness Parameters

Parameter Formula Description
N
R, _Z Nz —Z | Arithmetical mean deviation - average absolute de-
L . . .
N £ viation from mean height

Rq Root mean square roughness - enhanced sensitivity
to large variations

PV max(z) — min(z) | Peak-to-valley height - maximum height difference
N

Ssk N -1Rq3 Z(zi — Z)3 | Skewness - asymmetry of height distribution
i=1
N

Sku N-;Rq‘*z(zi — Z)* | Kurtosis - tailedness of height distribution
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Advanced Morphological Parameter Analysis. The morphological analysis system
implements seven shape parameters according to ISO 9276-6 and ISO 13322-2, ensur-
ing compatibility with commercial QICPIC dynamic image analysis systems. Calcula-
tions use exact geometric algorithms rather than approximations to maximize accuracy
and minimize systematic errors (Table 3). Here, A denotes particle area, P perimeter,
Fin and F,,, the minimum and maximum Feret diameters, Py, the convex hull
perimeter, and P,;,. the perimeter of a circle with equivalent area.

Table 3. Morphological Shape Parameters

Parameter Formula Description
F, min . .. . .
Aspect Ratio 7 Ratio of minimum to maximum Feret diameter (Range: 0-1)
max
Sphericity A Circle-equivalent perimeter ratio (Range: 0-1)
P
3 PCOTIVEX . .
Convexity —p Ratio of convex hull to actual perimeter (Range: 0-1)
. F, min . . .
Elongation 1- o Alternative aspect ratio representation (Range: 0-1)
max
4A ) ) ]
Roundness 5 Circle-equivalent area ratio (Range: 0-1)
T[Fmax
. . 4mA . . :
Circularity Pz Isoperimetric quotient (Range: 0-1)
Perimeter Peircie ndi
! _ Boundary smoothness indicator (Range: 0-1)
Regularity P

Feret diameters are computed using the rotating calipers method, which provides true
geometric accuracy by evaluating all orientations. The minimum Feret diameter
(breadth) represents the narrowest projected width, the maximum (length) the widest,
and their ratio defines the aspect ratio. Statistical analysis follows Q3-based percentile
calculations (DIN 66141), computing the 10th percentile (D,,, fine particles), median
(Dsy, representative particles), and 90th percentile (Dy,, coarse particles), with the me-
dian mainly used for comparative analysis.

2.4  Validation Methodology

Dual Validation Framework. The validation strategy applies domain-specific proto-
cols to comprehensively assess the pipeline’s performance across size, shape, and sur-
face roughness. Size and shape validation employed aluminum oxide samples imaged
with a WITec alpha300 R optical microscope under controlled conditions, with system-
atic comparison against QICPIC reference measurements from ~950,000 particles per
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condition. Surface roughness validation used the Hiilagii et al. dataset, which provides
ground truth from AFM and profile-based methods.

Statistical Validation Protocols. The validation protocols assess both accuracy (agree-
ment with reference values) and precision (repeatability). For size and shape, percentile
comparisons and morphological parameter distributions are directly evaluated against
QICPIC standards to quantify systematic bias and variability. Individual image anal-
yses with 50-500 particles provide sufficient sampling for morphological distribution
characterization, while combined multi-image datasets of 1000-3000 particles enable
robust percentile calculations comparable to industrial reference standards. For com-
parative segmentation evaluation, analyzing >20 complex images per method ensures
consistent performance assessment across diverse sample conditions. For surface
roughness, Bland-Altman analysis evaluates inter-method agreement by calculating
mean differences (systematic bias). Correlation analysis using Pearson coefficients
measures the strength of linear relationships between methods, verifying whether rela-
tive roughness rankings are preserved despite systematic scaling differences.

3 Results and Discussion

3.1 Segmentation Performance Evaluation

Segmentation Results on Aluminum Oxide Samples. The SAM-based segmentation
system successfully segmented aluminum oxide particles under both dispersed and dry
preparation conditions, producing high-quality binary masks and particle identifica-
tions suitable for quantitative morphological analysis. Representative results (Figure 9)
show accurate boundary delineation across preparation protocols.
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Fig. 9. Particle segmentation results for optical microscopy images of aluminum oxide powders.
Left column: dispersed sample (image a) and Right column: dry sample (image b). For each
condition, top row shows binary segmentation masks, middle row displays color-coded particle
labels, and bottom row presents raw images.

The dispersed sample image a (Figure 9, left) contained well-separated particles, ena-
bling robust automated segmentation of 528 particles from a single image. The binary
mask demonstrates clean boundary definition, while color-coded labeling confirms cor-
rect separation of individual particles. The dry sample image b (Figure 9, right) yielded
75 detected particles. These segmentation outputs form the basis for subsequent mor-
phological analysis, where boundary quality directly determines measurement accu-
racy. The hierarchical filtering strategy ensures that only high-confidence particles
passing all quality criteria are included in quantitative evaluations.

Multi-Level Filtering Strategy Performance. The hierarchical filtering cascade ef-
fectively maintained measurement precision in complex particle fields by distinguish-
ing valid particles from artifacts such as noise, agglomerates, and poorly defined ob-
jects. By combining SAM’s confidence scoring with microscopy-specific filters, the
segmentation system prioritized analytical precision over detection completeness, en-
suring robust identification for quantitative analysis (Figure 10, right). This conserva-
tive strategy is particularly important in automated workflows, where false positives
could compromise process decisions.

Raw Dispersed Sample Image c Pipeline SAM Overlayed Mask (c) Pipeline SAM Binary Mask (c)

* S8 wPm S

Fig. 10. Multi-level filtering strategy applied to agglomerated sample (image c). Left: raw mi-
crograph with overlapping particles. Middle: SAM segmentation with colored overlays of parti-
cles retained after filtering. Right: SAM segmentation binary mask

The approach markedly reduced detected objects while preserving visually accurate
particle identification. Problematic regions including partially occluded particles, edge
artifacts, and ambiguous boundaries were successfully eliminated (Figure 10, middle).
The integration of confidence thresholding, area-based statistical filtering, gradient
magnitude assessment, and circularity evaluation provides a level of quality control not
achievable with SAM’s inherent single-stage filtering.
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Comparative Analysis: Segmentation System vs. Conventional Methods. Compar-
ative evaluation across >20 complex dispersed aluminum oxide images revealed fun-
damental differences between the transformer-based SAM Segmentation System,
OpenCV (traditional edge-based vision), and Cellpose (state-of-the-art deep learning
trained for microscopy).

Cellpose Binary Mask (c)

Fig. 11. Segmentation comparison on a dispersed aluminum oxide sample. Top row: raw image
(d) and OpenCV masks, showing fragmented and inconsistent results. Bottom row: segmentation
system and Cellpose masks for images d and ¢ (raw and segmentation system masks of ¢ shown
in Figure 10), both yielding more coherent particle segmentations than OpenCV.

In the first dispersed sample (Figure 3d, blue background), OpenCV produced frag-
mented boundaries, while the segmentation system preserved particle individuality and
closely matched QICPIC references. Cellpose generated coherent masks but frequently
merged adjacent particles, inflating size estimates by 25-100% relative to QICPIC,
with errors increasing for closely spaced particles. A similar trend appeared in the sec-
ond sample (Figure 3c, orange background), where OpenCV again failed and Cellpose
performed better but remained imperfect. In contrast, the segmentation system achieved
particle counts and size distributions closely matching QICPIC, outperforming both
baselines through transformer-based boundary reasoning and hierarchical multi-stage
filtering that enabled accurate, training-free segmentation across diverse microscopy
conditions.
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3.2 Size and Shape Validation Results

QICPIC Reference Measurements and Statistical Foundation. The QICPIC dy-
namic image analysis system provided statistically robust reference measurements
based on approximately 950,000 particles per condition, establishing a solid foundation
for validation. Under dispersed conditions, particle sizes ranged roughly from 20 pm
to 80um with Dg, of about 50um, closely matching the manufacturer’s specified value
and confirming the accuracy of the reference measurements. Under dry conditions, a

shift toward larger apparent sizes was observed, consistent with particle agglomeration
effects.

100 45 100

D90=81.2um 40 D90=83.1um

20

D50=52.1um  D50=58.4um

Frequency Distribution q3* [%]
Cumulative Distribution Q3 [%]
Frequency Distribution q3* [%]
Cumulative Distribution Q3 [%]

~
S

. L]
/_/H/ D10=17.6um | 5 lmo;az 8um
. LT , . / :
1 2 5 10 20 50 100 200 500 1000 1 2 5 10 20 50 100 200 500 1000
Particle Size [um] Particle Size [pum]
Dispersed Condition Dry Condition
Sphericity [-]
Aspect Ratio [-] ] e
.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Value [-] Value [-]

Fig. 12. QICPIC reference measurements establishing ground truth distributions. Top
panels: PSD under dispersed (left) and dry (right) conditions showing both frequency
and cumulative distributions. Bottom panels: morphological parameter distributions for
sphericity and aspect ratio demonstrating measurement precision and statistical robust-
ness from ~950,000 particles per condition.

Dry conditions exhibited a pronounced shift toward larger particle sizes, corresponding
to a 143% increase in D, (fine fraction), a 12.1% increase in Ds, and a 2.1% increase
in Dy (coarse fraction) (Figure 12, top panels). This reflects differential effects of sam-
ple preparation across the size distribution. The trend likely arises from partial dissolu-
tion of aluminum oxide particles under aqueous dispersed conditions, where surface
interactions with water slightly reduce particle size relative to the pristine dry state. The
pronounced increase in D;, indicates that small particles are most affected, consistent
with enhanced dissolution at high surface-area-to-volume ratios.
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Morphological parameter distributions from QICPIC measurements (Figure 12, bot-
tom panels) highlight clear, but modest, preparation effects. Under dispersed condi-
tions, aspect ratio concentrates around 0.60-0.70 (whiskers ~0.45-0.80), indicating
well-separated particles with limited orientation bias, while sphericity clusters near
0.85-0.90 (whiskers ~0.82-0.92), consistent with near-spherical morphology. Under
dry conditions, aspect ratio shifts slightly higher to ~0.65-0.75 (whiskers ~0.55-0.85),
and sphericity shows a slightly broader distribution ~0.82—0.90 with a similar center,
consistent with mild orientation and occasional agglomeration introduced during dry
preparation.

Performance Across Dispersed Conditions. Validation on dispersed samples demon-
strated consistent measurements across imaging sessions and sample sizes. Single-im-
age analysis yielded a Dg, of 60.9um with a size range of approximately 45—75um,
while combined analysis of 10 images (2,998 particles) resulted in Dy, = 56.4um with
a range of about 40—70um (bottom Figure 13). The multi-image analysis confirms the

improved statistical representativeness achieved through larger sample sets.
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Fig. 13. Segmentation system’s PSD analysis for dispersed aluminum oxide samples. Top panel:
single-image analysis of image a (Figure 9) with corresponding morphological parameter distri-
butions. Bottom panel: combined analysis of 10 images with 2,998 detected particles, demon-
strating improved statistical representation with larger sample sizes.

Relative to QICPIC reference data, the segmentation system produced slightly higher
fine-fraction values (D;, = 39—46um vs. 17.6um), primarily due to optical resolution
limits and conservative filtering that exclude particles smaller than ~10-15 pixels. Ds,
showed close agreement with the reference value of 52.1 um, deviating by only 5.5—
17%, confirming reliable accuracy in the core size range. These differences reflect ex-
pected methodological contrasts rather than segmentation errors.

Morphological metrics (Figure 13, right) further validated segmentation quality.
Roundness values clustered around 0.8-0.9, indicating well-separated particles with
minimal agglomeration, while sphericity (0.7-0.8) and aspect ratio (0.6—0.8) distribu-
tions were consistent with near-spherical aluminum oxide morphology. Convexity
(0.95-1.0) and perimeter regularity (0.9-1.0) remained high, confirming smooth parti-
cle boundaries and minimal segmentation artifacts.

Dry Sample Analysis and Preparation Effects. Analysis of dry samples revealed dis-
tinct size characteristics compared to dispersed conditions. Single-image analysis
yielded a Ds, of 61.6pum with a size range of approximately 45—75um, while combined
analysis of 11 images (941 particles) produced D5, = 62.8pum with a range of about 45—
80um (Figure 14). The close agreement between single- and multi-image results con-
firms excellent measurement consistency under dry conditions.
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Fig. 14. Segmentation system’s analysis results for dry aluminum oxide samples. Top panel:
single-image analysis of image b (Figure 9) with corresponding morphological parameter distri-
butions. Bottom panel: combined analysis of 11 images with 941 detected particles, showing
improved statistical representation and revealing increased variability in morphological parame-
ters due to particle orientation effects in dry preparation.

Compared to dispersed samples, dry samples exhibited higher D, ; values (47.3—47.6um
vs. 39.7-46.0um), supporting the interpretation that aqueous dispersion causes slight
particle dissolution rather than agglomeration in dry conditions. D, values showed
modest increases, while Dy remained similar.

Morphological parameter distributions (Figure 14, right) displayed greater variabil-
ity under dry preparation. Aspect ratios broadened (0.4-0.8) due to orientation effects
on the substrate, whereas dispersed particles in suspension showed narrower ranges.
Sphericity values extended from 0.6—0.9 versus 0.7-0.8 in dispersed samples. Convex-
ity dropped to 0.85-0.95 compared to 0.95-1.0, reflecting more irregular boundaries.
Perimeter regularity decreased to 0.8—0.9 versus 0.9—1.0, consistent with substrate in-
teractions and edge effects.
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3.3  Surface Roughness Validation Analysis

Fundamental Differences in Measurement Methodologies. Surface roughness vali-
dation highlights fundamental differences between methods that extend beyond simple
scaling. The profile method derives roughness from 2D particle boundary fluctuations,
capturing edge irregularities caused by surface features intersecting the silhouette.
While effective for contour-level variations, it cannot probe surface topology away
from the boundary. AFM provides direct 3D topography but is limited to localized re-
gions of the surface. Although highly resolved, such measurements may not represent
overall roughness for particles with heterogeneous features or synthesis-induced sur-
face variations.

The depth-based approach introduced here analyzes the entire visible hemisphere
(~50% of surface area) from a single SEM image, providing intermediate-scale cover-
age between AFM’s localized measurements and global boundary methods. This
broader sampling yields more representative assessments of particle surface character-
istics, while also democratizing roughness analysis by removing the need for special-
ized expertise and AFM instrumentation.

Single-Particle Reconstruction and Multi-Perspective Visualization. Representa-
tive reconstruction of particle 5 demonstrates the depth-based method’s ability to gen-
erate high-quality 3D surfaces from standard SEM images (Figure 15). The SEM image
(Figure 15 left) shows complex textures typical of the analyzed particles. The depth
map (Figure 15 middle) captures a realistic hemispherical profile with clear surface
variations, reflecting the zero-shot capability of transformer-based depth estimation.
The quantitative depth scale visualization (Figure 15 right) spans 1532—1880 nm, con-
firming accurate recovery of surface relief and fine-scale texture.
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Fig. 15. Left: input particle 5 SEM image showing detailed surface morphology. Middle: DPT-
generated depth map with realistic hemispherical profile. Right: quantitative depth scale (1532-
1880 nm range) enabling precise surface roughness quantification with 348nm total relief.

The complete workflow (Figure 16) illustrates the transformation from original SEM
image of particle 9 (top middle) through segmentation (bottom left) and depth estima-
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tion (bottom middle) to 3D reconstruction (bottom right). The depth map shows realis-
tic surface features, while the point cloud (right) reconstructs the full visible hemi-
sphere.

Fig. 16. Complete 3D reconstruction and visualization system for particle 9. left: (1) Original
SEM image, (2) segmented particle, (3) inferred depth map, and (4) 3D reconstructed surface
view. Right Panels (a—e): show different point cloud perspectives of the reconstructed particle:
(a) bottom view, (b) top view, (c) front view, (d) left side view, and (e) right side view.

Multi-perspective views (Figure 16, right) reveal information inaccessible from single-
view SEM images. The visualization suite provides top views of surface texture distri-
bution, bottom views of substrate interfaces, textured renderings highlighting fine-scale
details, side profiles of hemispherical geometry, and cross-sections exposing internal
surface profiles and roughness length scales. This capability enables detection of ani-
sotropy, curvature variations, and spatial roughness distributions offering morphologi-
cal insights into synthesis effects beyond traditional 2D analysis.

Depth-Based Reconstruction Performance Across All Particles. The depth-based
system successfully analyzed surface roughness across all nine core-shell microparticle
samples, demonstrating clear differentiation between particle types and synthesis
batches. The complete processing workflow from original SEM images through 3D
reconstruction to final surface analysis is shown in Figure 17.



25

0y

G,

4 SRR IS ; iy

i

§

Fig. 17. Overview of particle analysis results for all nine analyzed particles. Top row: original
segmented SEM images showing surface morphology variations. Middle row: DPT processed
depth maps. Bottom row: 3D reconstructed surfaces revealing hemispherical profiles and texture
details.

The overview in Figure 17 demonstrates the DRCS’s ability to analyze particles with
systematically varied architectures. Successful reconstruction across all samples vali-
dates the hemispherical assumption used in depth-to-point-cloud conversion, where
particle height is set to half the diameter. Particles 1 exhibits smoother surfaces in both
the SEM images and the 3D reconstructions, with depth maps showing relatively uni-
form height variations consistent with single-shell synthesis. In contrast, Particles 3
through 9 represent core—shell—shell structures and display progressively more complex
surface textures, with reconstructed 3D models and depth maps revealing heterogene-
ous roughness across multiple length scales. Batch-to-batch differences are apparent in
the reconstructions, and the systematic progression from smoother to increasingly com-
plex particles highlights the DRCS’s sensitivity to surface architecture induced by syn-
thesis conditions.

Validation Against Profile Method Benchmarks. For the nine selected validation
particles, only profile-method roughness values were consistently available from
Hiilagii et al.. Although AFM measurements were reported in the same study, they were
not performed on all particles and therefore could not be used for direct, paired com-
parison in our validation set. However, because AFM was used to verify the accuracy
of the profile method in that work, the profile measurements constitute an appropriate
and experimentally validated baseline for the present evaluation.
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Fig. 18. Validation of depth-derived roughness against the contour-based profile method for Par-
ticles 1-9. Left: Bland-Altman plot showing a consistent positive offset and 95% limits of agree-
ment, indicating systematic rather than random deviation. Right: Comparison of depth-based and
profile-derived Rq values across the particle set, illustrating preservation of relative roughness
trends despite differences in absolute scale.

A systematic comparison between the depth-based roughness estimates and the profile-
derived Rq values revealed a consistent positive bias. Bland—Altman analysis (Figure
18, left) indicated an average difference of +55.9 nm, with 95% limits of agreement of
+27.9 nm. The offset between the two methods is therefore stable, reproducible, and
quantifiable, suggesting that it originates from methodological differences rather than
stochastic variation. The profile method captures roughness along a single contour,
whereas the depth-based approach incorporates surface variability across a larger hem-
ispherical region, and the observed amplification appears to reflect this fundamental
difference in sampling rather than an intrinsic failure of the method. Even so, the mag-
nitude of the divergence highlights the need for calibration if absolute numerical com-
parability is required.

Despite these scale discrepancies, the depth-based method preserved the relative or-
dering of particle roughness (Figure 18, right). Across Particles 1-9, it reproduced the
same monotonic trend obtained from the profile method and correctly distinguished
smoother from rougher surfaces. Correlation analysis yielded r =~ 0.64, meaning that
roughly 40% of the variance in classical contour-based roughness is captured by the
depth approach. Although this does not represent perfect agreement, it demonstrates
that the method retains meaningful information about surface complexity and is not
dominated by random noise or artefacts.

Depth-derived roughness values were on average approximately 3.4 times higher
than the corresponding profile values, with ratios ranging from 1.9 to 5.4 across Parti-
cles 1-9. Profile Rq for the validation set spanned 11.2-39.1nm, while depth-based
values ranged from 59.9-108.9nm. This systematic scaling is consistent with the ex-
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pected behavior of a method that samples a larger portion of the three-dimensional sur-
face. Although such amplification complicates direct numerical matching, the con-
sistent and predictable offset provides a clear pathway for calibration. Once calibrated,
the depth-based approach may offer a more representative measurement of fine-scale
texture, especially in contexts where full-surface morphology rather than boundary con-
tours is physically relevant.

3.4  SSB Application Case Study

For battery process engineering, the proposed IPGSS provides a useful capability to
characterize (sub)-micron-sized particles, which are particularly relevant during SSB
development. In this field, SSB composite cathodes demand tailored PSD for the active
material and the solid electrolyte (SE) to enable a functional microstructure. Thereby,
the PSD of the SE often needs to be adapted via comminution and requires correspond-
ing quality control. Conventional laser-diffraction methods face challenges in this con-
text (Figure 19) as agglomerates are easily measured instead of primary particles, thus
overestimating true particle morphology of the SE [56,57,58]. Moreover, identifying a
truly inert solvent for wet analysis of SEs is challenging but necessary, since any reac-
tion with the electrolyte could alter its morphology and shift its apparent PSD [59,60].
Also, dry laser diffraction is not straightforward for SEs, since these materials are often
air- and moisture sensitive. Lastly, the morphology of the particles is neglected in con-
ventional laser diffraction methods, but in the field of SSB, morphology can have a
significant impact on the microstructure of the electrode and thus the electrochemical
performance [61,62].
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Fig. 19. Comparison of IPGSS’s and laser-diffraction analyzer’s (LDA) analysis approaches for
agglomerated SE powders. The IPGSS captures true primary particle size and morphology, while
LDA reflects agglomerate-level features.

The capability of IPGSS to resolve primary particles within strongly agglomerated SEs
is demonstrated here using the example of LisInCls (LIC). This electrolyte was synthe-
sized via a solvent-based route [63] and subsequently comminuted for 8§ min at 600
rpm. As shown in Figure 20 top left panel, the comminuted powder contains both small
primary particles as well as larger agglomerated LIC clusters. A magnified view of one
agglomerate (Figure 20 top right panel) reveals that these clusters are predominantly
composed of submicron-sized primary particles. However, typical wet laser diffraction
measurements primarily detect these agglomerated clusters, resulting in a broad PSD,
with a median particle size of x5q = 9.47um (Figure 20 bottom left panel). This high-
lights a fundamental limitation of conventional measurement techniques for SEs as ac-
curate particle size determination is often compromised by agglomeration effects and
solvent interactions. Since the SEs particle size plays a critical role in determining the
microstructure of the composite electrode and has a pronounced impact on overall cell
performance, precise characterization methods such as the proposed pipeline are essen-
tial for advancing SSB technology.

Using guided image analysis, it is possible to accurately identify and quantify the
primary particles contained within SE agglomerates. To illustrate the impact of this
capability, the IPGSS was applied to analyze the primary particles within a single LIC
agglomerate (Figure 20 bottom right panel). The resulting particle size distribution dif-
fers markedly from that obtained by conventional laser diffraction, revealing the pres-
ence of significantly smaller particles, with a median size of x5, = 0.54pum. However,
it should be noted that SEM-based image analysis typically involves a much smaller
number of particles (in this case, ~150), which increases the likelihood of statistical
errors. Therefore, for reliable quantitative evaluation, a sufficiently large number of
particles should be analyzed to ensure sufficient statistics.
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Fig. 20. Top left: SEM of comminuted LIC showing agglomerated clusters. Top right: Magni-
fied view of one agglomerate with submicron primary particles. Bottom left: PSD from laser
diffraction (red) and the IPGSS (green). Bottom right: Segmented SEM of an LIC agglomerate
analyzed with the pipeline.

3.5 Discussion of Methodological Implications

Transformer Architecture and Interactive System Advantages. The SAM-based
segmentation system demonstrated clear advantages over both traditional computer vi-
sion and specialized microscopy models. Extensive pre-training on over one billion
masks enables zero-shot generalization, eliminating the need for domain-specific train-
ing while maintaining robust performance across diverse particle types, imaging con-
ditions, and preparation protocols. This marks a fundamental shift from conventional
approaches relying on either hand-crafted algorithms (OpenCV) or domain-specific da-
tasets (Cellpose). SAM’s transformer architecture with self-attention captures global
context and long-range dependencies, supporting accurate boundary detection even un-
der challenging conditions such as overlapping particles, varying contrast, and complex
backgrounds scenarios where traditional methods consistently fail.

The IPGSS introduces a novel dimension to particle characterization by allowing
user-guided analysis through prompts such as point clicks, bounding boxes, or rough
sketches. This maintains transformer accuracy while enabling expert control in cases
where automated algorithms underperform. In the SSB case study, this capability was
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essential for isolating primary particles within agglomerates. By combining zero-shot
generalization, robust boundary understanding, interactive prompting, and hierarchical
filtering, the segmentation system delivers consistent performance across samples and
imaging conditions. It overcomes the weaknesses of traditional methods (failure on
complex images) and specialized deep learning models (merging of closely spaced par-
ticles), providing a reliable solution for both research and industrial applications.

Sample Preparation Effects and Measurement Considerations. Systematic differ-
ences between dispersed and dry preparations highlight how sample handling influ-
ences particle characterization. The smaller particle sizes observed under dispersed
conditions particularly evident in D;, values (17.6pm vs. 42.8um in QICPIC; 39.7—
46.0um vs. 47.3—47.6um in segmentation system measurements), likely result from
partial dissolution of aluminum oxide in aqueous media rather than agglomeration in
dry samples. This interpretation is supported by a 143% increase in D, but only a 2.1%
increase in Dy, indicating selective effects on small particles with higher surface area-
to-volume ratios.

Morphological parameter differences between conditions, such as broader aspect ra-
tio and perimeter regularity distributions in dry samples, primarily reflect particle ori-
entation on the substrate rather than intrinsic shape variation. In aqueous dispersion,
however, slight surface dissolution and hydration can smooth particle edges, leading to
marginally higher sphericity and a “softer” apparent shape. These effects underscore
the importance of matching sample preparation to analytical goals: dry preparations
preserve original size and surface features, whereas dispersed conditions enhance par-
ticle separation and boundary definition but may slightly modify surface morphology.

Validation across multiple measurement domains confirms the segmentation sys-
tem’s reliability for both research and industrial use. By combining transformer-based
segmentation, hierarchical filtering, and depth-aware analysis, the pipeline performed
reliably compared to conventional methods on complex samples while remaining com-
patible with established standards and reference systems. The interactive prompting
capability further supports expert-guided selective analysis, and the depth-based sur-
face characterization broadens accessibility by eliminating the need for specialized
AFM instrumentation.

3D Surface Reconstruction Capabilities and Novel Measurement Scale. The depth-
based surface roughness analysis provides morphological information that comple-
ments, rather than replaces, traditional techniques. By generating 3D reconstructions
directly from standard SEM images, the method enables an intermediate measurement
scale: it characterizes the full visible particle surface rather than the highly localized
contact region measured by AFM or the boundary-limited contour captured by profile
analysis. This broadens access to surface characterization by removing the need for
AFM instrumentation, specialized preparation, or operator expertise, and its zero-shot
capability allows rapid roughness estimation without domain-specific training data or
calibration. Although the method does not aim to replicate nanoscale AFM precision,
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it fills a practical gap by offering interpretable, full-surface roughness estimates using
equipment already common in research and industrial settings.

The depth-derived roughness values are systematically higher than those obtained
from the contour-based profile method, with an average scaling factor of approximately
3.4% (range 1.9-5.4x). This predictable amplification likely reflects the greater surface
coverage inherent to the depth approach rather than methodological error, as volumetric
texture across the visible hemisphere is captured rather than a single edge contour. De-
spite this offset, the method preserves relative roughness relationships across particles
of varying composition and complexity, yielding a moderate correlation with profile
measurements (r =~ 0.64). While this indicates room for refinement, it also confirms that
the method is systematic, reproducible, and sensitive to meaningful variations in sur-
face structure. The stable scaling factor enables straightforward calibration when abso-
lute comparability is required, supporting use of the approach for both comparative
ranking and quantitative characterization.

4 Conclusion

This work presents a comprehensive particle characterization pipeline integrating trans-
former-based segmentation and zero-shot depth estimation capabilities to democratize
advanced microscopy analysis. The validated segmentation system addresses funda-
mental limitations of conventional characterization methods through application of
foundation models to materials science, demonstrating good performance across size,
shape, and surface roughness measurements.

The SAM-based segmentation approach achieved robust particle identification on
complex samples where traditional computer vision methods systematically fail, with
validation across over 20 images demonstrating consistent accuracy compared to
QICPIC reference measurements from ~950,000 particles. The transformer architec-
ture's zero-shot generalization eliminated domain-specific training requirements while
outperforming both OpenCV edge-based methods that failed consistently due to the
high complexity of the images and specialized Cellpose models (which showed 25-
100% size overestimation). The IPGSS enables user-directed analysis through prompt-
able segmentation, providing capabilities not available in commercial systems for spe-
cialized applications requiring selective particle identification.

Surface roughness analysis through depth-based 3D reconstruction demonstrated no-
table practical accessibility, enabling full-surface characterization directly from stand-
ard SEM images without the need for specialized AFM instrumentation or contact-
based measurements. Validation across nine core-shell microparticles showed a mod-
erate correlation (r = 0.64) with traditional profile-derived roughness values, alongside
a systematic 3.4x overestimation that reflects the DRCS’s more comprehensive hemi-
sphere-scale sampling compared to boundary-based or localized techniques. This
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broader measurement scale captures volumetric surface features that may be more rep-
resentative of functional particle properties, while substantially reducing instrumenta-
tion requirements, operator expertise, and measurement time.

The SSB application exemplified practical impact, successfully resolving submicron
primary particles (Dg,=0.54pum) within agglomerated solid electrolyte structures that
conventional laser diffraction measured as 9.47um agglomerates a 17.5-fold difference
critical for electrode microstructure design. The interactive segmentation enabled ex-
pert-guided analysis identifying approximately 150 individual particles within single
agglomerates, demonstrating capabilities essential for advanced materials processing
where particle-level information determines performance.

The hierarchical filtering strategy combining transformer confidence scoring with
microscopy-specific algorithms ensured measurement reliability across diverse condi-
tions, while maintaining compatibility with ISO standards and commercial QICPIC
systems. The pipeline achieved measurement precision suitable for both research ap-
plications and industrial quality control, with low coefficients of variation for size
measurements and good repeatability for morphological parameters.

Future development should focus on calibration protocols reconciling depth-based
measurements with traditional surface roughness standards, computational optimiza-
tion for high-throughput industrial implementation, and extension to non-spherical par-
ticle geometries through adaptive scaling. The demonstrated integration of foundation
models with domain-specific algorithms establishes a framework for applying artificial
intelligence to accelerate materials characterization, potentially transforming particle
analysis from specialized laboratory techniques to accessible tools enabling broader
scientific advancement.

The work represents the first application of promptable transformer segmentation to
particle characterization, the first demonstration of hemisphere-scale depth-based sur-
face roughness analysis from standard SEM images, and the first comprehensive vali-
dation demonstrating good performance versus conventional methods across multiple
characterization domains. To facilitate broader adoption and enable researchers to ap-
ply these methods to their own materials, an accessible implementation featuring
IPGSS with morphological parameter measurement is provided through an intuitive
Python-based graphical interface.

Code Availability: A partial version of the interactive particle characterization tool
featuring SAM-based segmentation and morphological analysis developed in this study
is available as open-source software at https://github.com/ahmedeisa2. The implemen-
tation provides a user-friendly graphical interface enabling researchers to apply prompt-
able segmentation and quantitative particle analysis to their microscopy images.
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